
Insight into the Effect of Promoter Mn on Ethanol Formation from Syngas on a Mn-Promoted MnCu(211) Surface: A Comparison with a Cu(211) Surface

Riguang Zhang, Guiru Wang, Baojun Wang,* and Lixia Ling

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China

Supporting Information

ABSTRACT: Density functional theory calculations have been employed to investigate the effect of promoter Mn on ethanol formation from syngas on a Mn-promoted MnCu(211) surface. Our results show that $CO + 3H \rightarrow CHO +$ $2H \rightarrow CH_2O + H \rightarrow CH_3O$ is an optimal pathway for the overall CO conversion. Starting with CH₃O, CH₃ is formed via CH₃O \rightarrow CH₃ + O. Then, CHO insertion into CH₃ can form CH₃CHO, and further, CH₃CHO is successively hydrogenated to ethanol via CH₃CH₂O intermediate. Meanwhile, CH₃OH is formed via CH₃O + H \rightarrow CH₃OH. Compared to the pure Cu(211) surface, CH₃ formation is found to be energetically compatible with CH₃OH formation on the MnCu(211) surface, which can lead to more CH₃ sources and less CH₃OH; thus, the productivity and selectivity of ethanol can be improved. On the other hand, starting from CH₃, the MnCu(211) surface is more favorable for CHO insertion into CH₃ to CH₃CHO in comparison with CH₃

hydrogenation, dissociation and coupling to CH_4 , CH_2 , and C_2H_6 due to their high activation barriers; namely, the MnCu(211) surface exhibits a better selectivity toward C_2 oxygenates rather than hydrocarbons. As a result, we can show that, by introducing promoter Mn into Cu catalyst, the productivity and selectivity to ethanol from syngas can be effectively improved.

1. INTRODUCTION

Syngas, derived from biomass or coal, has drawn more attention since both sources are abundant, and biomass is a renewable feedstock.^{1,2} Among the products from syngas, ethanol is a more desirable product as neat fuels, fuel additives, or a carrier for hydrogen to supply fuel cells and a feedstock for the synthesis of a variety of chemicals, fuels, and polymers.^{3–6} Nowadays, many studies have focused on the catalytic conversion of syngas to ethanol; however, no commercial process exists due to the challenging chemical and technological barriers, so low yield and poor selectivity for ethanol formation from syngas remain the major hurdles associated with the use of known catalysts.⁷ In order to make this catalytic conversion route commercially attractive, it is essential to develop more effective catalysts.

Among the existing catalysts, Rh is unique for the production of C₂ oxygenates from syngas due to its high selectivity.^{8,9} However, considering the high cost and limited availability of Rh, it would be preferable to find some other active catalysts composed of inexpensive metals. Recently, great progress has been made to improve the activity of catalysts composed of inexpensive metals, such as the modified Cu-based catalysts,^{10–16} which have been widely used for C₂ oxygenates formation from syngas in the temperature range of 280–310 °C at pressures of about 40–100 bar.^{12,16–21}

On the other hand, a large number of works have been performed to investigate the promoting effects of adding

promoter metal (Mn, Ce, Ni, Fe, etc.) into supported Rh catalyst to improve the catalytic activity and/or selectivity of ethanol from syngas.^{7,22–44} Among these promoters, promoter Mn has been shown to increase the activity and selectivity of C₂ oxygenates from syngas.^{36–41} Mei et al.⁴¹ have found that Mn plays an important role in lowering the activation barrier of CO insertion into CH_x (x = 1-3) on Mn-promoted Rh-based/SiO₂ catalyst; thus, the productivity and selectivity to ethanol can be increased. The experimental studies by Luo et al.⁴² have further shown that the addition of Mn is essential for the formation of acetic acid and acetaldehyde with high selectivity. Li et al.⁴³ have found that promoter Mn can improve the selectivity of Rh to convert syngas to ethanol on Mn-promoted Rh-based catalyst. Recently, Ngo et al.⁴⁴ have shown that the addition of Mn can improve the selectivity of Rh romoter Mn can improve the selectivity of ethanol on the Fe-promoted Rh/TiO₂ catalysts.

To the best of our knowledge, so far, many investigations about promoters have shown that the additions of promoter into the catalyst can promote the selectivity to ethanol.^{10–13,45,46} However, few experimental and theoretical studies have been reported to understand ethanol formation from syngas on Mn-promoted Cu-based catalysts and the effect of promoter Mn on the reaction. Thus, the roles of promoter

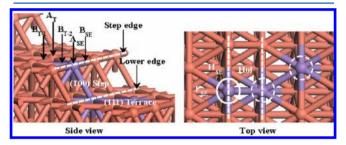
```
Received:September 22, 2013Revised:February 16, 2014Published:February 21, 2014
```

Mn into Cu catalyst and the effect of Mn on ethanol formation from syngas are still unclear; meanwhile, no generally accepted mechanism of ethanol formation from syngas on Mn-promoted MnCu catalyst has been reported.

In the present work, ethanol formation from syngas on the Mn-promoted MnCu(211) surface is systematically investigated with density functional theory (DFT) method together with periodic slab models, aiming to clarify the favorable reaction mechanisms, determine the kinetics, probe into the role of promoter Mn in MnCu catalyst, as well as obtain the effect of Mn on ethanol formation from syngas compared to the reported pure Cu(211) surface.

2. COMPUTATIONAL METHOD

2.1. Computational Method. The DFT calculations are conducted using the code DMol³ in Materials Studio 5.5.^{47,48} The generalized gradient approximation proposed by Perdew and Wang (GGA-PW91)^{49,50} is employed for the exchange-correlation functional. An effective core potential (ECP) is used to make the inner electrons of metal atoms frozen and replaced,^{51,52} and other atoms are treated with an all-electron basis set. The wave functions are expanded in terms of a double-numerical basis set with a polarization d-function (DNP).⁵³ Brillouin-zone integrations have been performed using $1 \times 2 \times 1$ k-point grid and a Methfessel-Paxton smearing of 0.005 Ha. In addition, in the discussion of the DFT results, no zero-point energy (ZPE) corrections are included in this study.


The transition state (TS) is located by Complete LST/QST approach.⁵⁴ The linear synchronous transit (LST) is conducted to bracket the maximum between the reactants and products, followed by repeated conjugate gradient minimizations and the quadratic synchronous transit (QST) maximizations until a transition state was located.^{14,15} In addition, frequency analysis has been used to validate the transition state, and TS confirmation is performed on every transition state to confirm that they lead to the desired reactants and products.^{14,15}

2.2. MnCu(211) Surface. There is compelling evidence that stepped surfaces often exhibit a superior catalytic activity over the ideal regular surfaces. 55-62 In fact, the step site is the most common defect for metal catalysts, which may play a key role in catalysis. A stepped (211) surface consists of (111) terrace and the (100)-type step, which can exhibit a better catalytic activity.^{61,63-67} For example, Liu et al.⁶¹ have studied NO reduction on Pt-group metals and found that the stepped Ir(211) surface possess high selectivity for NO reduction than that on Ir(111) surface. Xu and Mavrikakis⁶³ have shown that the adsorption and dissociation of O2 can be enhanced on the stepped Au(211) surface compared to the flat Au(111) surface. Mavrikakis et al.⁶⁶ have found that the stepped Rh(211) surface can lower the activation barrier of CO dissociation by 120 kJ mol⁻¹ than the flat Rh(111) surface. Further, Behrens et al.⁶⁷ have shown that CO and CO₂ hydrogenation to methanol on the stepped Cu(211) surface exhibits a better catalytic activity than that on the flat Cu(111). Based on the investigations above, the stepped MnCu(211) surface is chosen as the model of Mn-promoted MnCu catalyst to investigate ethanol formation from syngas.

For MnCu(211) surface, two existing forms have been reported: one is that replacing a Cu atom by a Mn atom;⁶⁸ the other is that adsorbing a surface Mn atom onto Cu surface.^{69–71} As far as we know, for the effect of promoter on C_2 oxygenates formation from syngas, the present studies is mainly focus on

the first type of model.^{11,14,43,72} Thus, in our study, we only employ the first model via replacing a Cu atom by a Mn atom as the promoter Mn-doped Cu(211) model.

MnCu(211) is modeled using an eight-layer slab model with a 10 Å of vacuum between any two successive slabs. A periodic $p(2 \times 3)$ unit cell is used. During the optimization, the uppermost five layers together with the adsorbates are relaxed, and the bottom three layers are fixed at their bulk positions. For the stepped MnCu(211) surface, three possible sites for Mn atom exist on (211) surface: a step edge, a terrace, or a step base site (see Figure 1). Thus, the most favorable configuration

Figure 1. Surface morphology of the MnCu(211) surface with a Mn atom at three different sites marked in a white circle. The purple and orange balls denote Mn and Cu atoms, respectively. A_{SE} , B_{SE} , F_{SE} , and H_{SE} refer to atop, bridge, fcc, and hcp sites on the step edge (SE). F_{LE} and H_{LE} refer to fcc and hcp sites on the lower edge (LE). A_T and B_T refer to atop and bridge sites on the (111) terrace, and Hol refers to the hollow adsorption site on the stepped surface.

of MnCu(211) surface is obtained on the basis of the substitution energy, $E_{\rm sub}^{14,73,74}$

$$E_{\rm sub} = E_{\rm Mn} + E_{\rm Cu(211)} - E_{\rm Cu} - E_{\rm MnCu(211)}$$

where $E_{\rm sub}$ is the substitution energy of MnCu(211) surface and $E_{\rm Cu(211)}$ and $E_{\rm MnCu(211)}$ are the total energies of Cu(211) and MnCu(211) surfaces, respectively. $E_{\rm Cu}$ and $E_{\rm Mn}$ are the total energies of single Cu and Mn atom, respectively. With this definition, the smaller $E_{\rm sub}$ is, the easier the replacement of the Cu atom by a Mn atom.

Our results show that the model with a Mn atom at the step edge is found to be the most easily formed. Among the three sites, as shown in Figure 1, the system, a Cu atom at the step edge replaced by a Mn atom, is chosen to model MnCu(211) surface; there are nine different adsorption sites on the MnCu(211) surface with (111) terrace and (100) step, which are the step edge (atop, bridge, fcc, and hcp), lower edge (fcc and hcp), terrace (atop and bridge), and (100) step (hollow site).¹⁴

3. RESULTS AND DISCUSSIONS

Nowadays, previous studies have investigated CO hydrogenation reactions without considering the effect of presence of H atom on reaction mechanism,^{72,75–77} and the corresponding results can systematically clarify the reaction mechanism, which are consistent with the reported experimental results. On the other hand, in each hydrogenation reaction, although there are a lot of energetically most stable H species on the surface, under a realistic condition, when hydrogenation reaction occurs, only one H adatom interacts with the corresponding adjacent adsorbed species. As a result, we think the effect of the presence of H atoms on reaction mechanism is negligible under a realistic condition, meanwhile, we choose an H atom on the surface to qualitatively investigate CO hydrogenation reaction,

and the obtained results are reliable. Therefore, in this study, all the different hydrogenation reaction steps involve the addition of atomic hydrogen present on the surface, only one H atom is presented on the surface for each hydrogenation step involving in ethanol formation from syngas.

3.1. Adsorption of Reactants and Possible Intermediates. For the adsorption of reactants and possible intermediates, all possible adsorption sties on MnCu(211) surface are considered. By our DFT calculations, the most stable configurations of reactants and possible intermediates are presented in Figure 2, and the adsorption energy and key

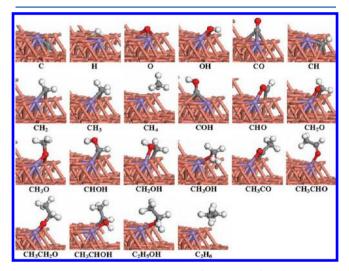


Figure 2. Most stable adsorption configurations of surface species involved in ethanol formation from syngas on MnCu(211). Gray, red, white, orange, and purple balls denote C, O, H, Cu, and Mn atoms, respectively.

geometrical parameters are shown in Table 1. Our results indicate that all species prefer to interact with the Mn atom rather than the Cu atom after introducing the Mn atom into the Cu catalyst, suggesting that promoter Mn may be the main active site to catalyze ethanol formation from syngas.

3.2. Formation Mechanism of CH_x (x = 1-3) **Species.** *3.2.1. CO Initial Step.* Three reactions may occur for CO initial step involved in ethanol formation from syngas on MnCu(211) surface (R1~R3). Figure 3 presents the potential energy profile of these reactions together with the structures of initial states (ISs), transition states (TSs), and final states (FSs).

$$CO \rightarrow C + O$$
 (R1)

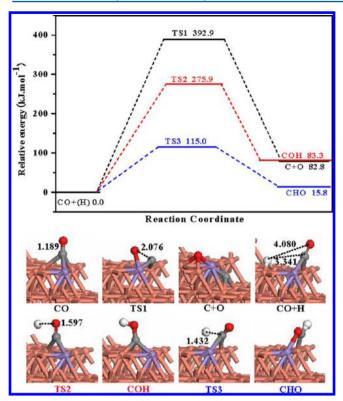
 $CO + H \rightarrow COH$ (R2)

$$CO + H \rightarrow CHO$$
 (R3)

In (R1), the C–O bond cleavage of CO can dissociate into C and O via a transition state TS1. This reaction requires an activation barrier of 392.9 kJ mol⁻¹ with the reaction energy of 82.8 kJ mol⁻¹. In TS1, C adsorbs at the Mn–Cu bridge-SE site, and O adsorbs at the Mn atom of step edge. The C–O distance is elongated to 2.076 Å from 1.189 Å in CO.

For (R2), CO hydrogenation to COH via TS2 needs to overcome an activation barrier of 275.9 kJ mol⁻¹ with the reaction energy of 83.3 kJ mol⁻¹. In TS2, CO adsorbs at the bridge-T-2 site, and the O–H distance is decreased to 1.597 Å from 4.080 Å in CO + H. In (R3), for CO hydrogenation to CHO via TS3, this reaction is endothermic by 15.8 kJ mol⁻¹

Table 1. Adsorption Energy and Key Geometrical Parameters of Reactants, Possible Intermediates and Products Involved in Ethanol Formation from Syngas on MnCu(211) Surface


species	E _{ads} (kJ mol ⁻¹)	configurations	key parameter (Å)		
С	647.8	hollow	Mn-C: 1.881; Cu-C: 1.907, 1.930, 1.933		
Н	298.7	bridge-T-1	Cu-H: 1.795, 1.700		
	298.3	bridge-SE	Mn-H: 1.785, Cu-H: 1.635		
0	592.0	hcp-SE	Mn-O: 1.851; Cu-O: 1.919, 2.007		
ОН	430.9	bridge-SE via O	Mn–O: 1.961; Cu–O: 2.011		
СО	154.7	hcp-SE via C	Mn-C: 1.991; Cu-C: 2.121, 2.237		
СН	604.2	hollow	Mn-C: 2.009; Cu-C: 2.038, 2.052, 2.073		
CH ₂	419.1	bridge-SE via C	Mn–C: 1.967; Cu–C: 1.961		
CH ₃	256.4	bridge-SE via C	Mn-C: 2.156; Cu-C: 2.150		
СОН	390.5	fcc-SE via C	Mn-C: 1.928; Cu-C: 1.991, 2.000		
СНО	263.5	bridge-SE via C and O	Mn-O: 2.077; Cu-C: 1.924		
CH ₂ O	164.5	bridge-SE via C and O	Mn-O: 1.874; C-Cu: 2.123		
CH ₃ O	335.6	bridge-SE via O	Mn–O: 1.946; Cu–O: 2.018		
СНОН	321.9	bridge-SE via C	Mn-C: 1.999; Cu-C: 2.041		
CH ₂ OH	244.8	bridge-SE via C and O	Mn-O: 2.134; Cu-C: 1.991		
CH ₃ OH	135.4	atop-SE via O	Mn-O: 2.186		
CH ₃ CO	276.4	bridge-SE via C and O	Mn–O: 2.069; Cu–O: 1.949		
CH ₃ CHO	126.9	atop-SE via O	Mn-O: 2.080		
CH ₃ COH	318.7	bridge-SE via α -C ^{a}	Mn-C: 2.023; Cu-C: 2.082		
CH ₃ CHOH	222.0	bridge-SE via α -C and O	Mn–O: 2.114; Cu–C: 2.014		
C ₂ H ₅ OH	124.5	atop-SE via O	Mn-O: 2.063		
CH_4	59.7	atop-SE upon Mn	Mn-C: 3.188		
C_2H_6	82.1	bridge-SE upon Mn	Mn-C ₁ : 3.156; Mn-C ₂ : 3.884		
$^{a}\alpha$ -C denotes the C atom linked with functional groups.					

and requires an activation barrier of 115.0 kJ mol⁻¹. In TS3, the C–H distance is decreased to 1.432 Å from 3.341 Å in CO+H.

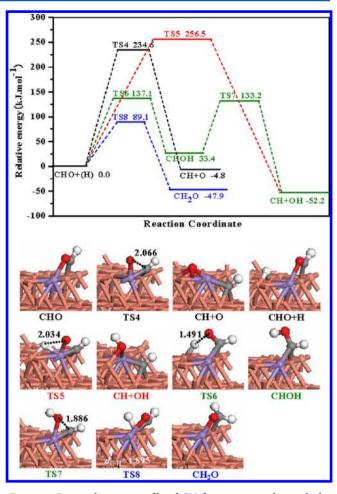
As shown in Figure 3, it can be seen that the direct C–O bond cleavage of CO is very difficult due to the high activation barrier. In contrast, CO hydrogenation to formyl species (COH or CHO) is more plausible, in which CHO formation is more preferred. Thus, the adsorbed CO on MnCu(211) surface is dominantly hydrogenated to CHO.

3.2.2. CH Formation. Above results show that CO hydrogenation to CHO is the main pathway, thus, starting from CHO and CHO+H, only three possible reactions contributes to CH formation (R4~R6); meanwhile, CHO hydrogenation to CH₂O is also considered (R7). Figure 4 presents the potential energy profile of CH and CH₂O formations, which also includes the structures of ISs, TSs, and FSs.

$$CHO \rightarrow CH + O$$
 (R4)

Figure 3. Potential energy profile of CO initial step together with the structures of initial states (ISs), transition states (TSs), and final states (FSs). Bond lengths are in Å. See Figure 2 for color coding.

$CHO + H \rightarrow CH + OH$ (16)	$CHO + H \rightarrow CH + OH$	(R5)
------------------------------------	-------------------------------	------


 $CHO + H \rightarrow CHOH \rightarrow CH + OH$ (R6)

$$CHO + H \to CH_2O \tag{R7}$$

For CH formation, in (R4), beginning with the initial state, CHO, the direct dissociation of CHO can form CH and O via TS4, and this reaction is slightly exothermic by 4.8 kJ mol⁻¹ with an activation barrier of 234.6 kJ mol⁻¹. In TS4, CH adsorbs at the Mn-Cu bridge-SE site, and O adsorbs at the Mn atom of step edge site. The distance between C and O atoms is 2.066 Å. In (R5), the dissociation of CHO with hydrogenassisted can form CH + OH via TS5, and this reaction requires an activation barrier of 256.5 kJ mol⁻¹. It is exothermic by 52.2 kJ mol⁻¹. In TS5, CH adsorbs at the Mn–Cu bridge-SE site, O adsorbs at the Mn atom of step edge, and H adsorbs at the bridge-T-2 site. In (R6), H adatom first associates with the O atom of CHO via TS6 to form CHOH, and this reaction is endothermic by 33.4 kJ mol⁻¹ with an activation barrier of 137.1 kJ mol⁻¹. In TS6, CHO adsorbs at the Mn–Cu bridge-SE site via C atom and H adsorbs at the atop-T site. Subsequently, CHOH further dissociates into CH + OH via TS7 with an activation barrier of 99.8 kJ mol⁻¹, and this reaction is exothermic by 85.6 kJ mol⁻¹. In TS7, CH adsorbs at the Mn-Cu bridge-SE site, and OH adsorbs at the Mn atom of step edge; the distance between C and O atoms is 1.886 Å.

For (R7), starting from CHO + H, CHO can be hydrogenated to CH_2O via TS8 with an activation barrier of 89.1 kJ mol⁻¹, this reaction is exothermic by 47.9 kJ mol⁻¹. In TS8, CHO adsorbs at the Mn–Cu bridge-SE site via both C and O atoms, and H adsorbs at the Cu atom of step edge.

As shown in Figure 4, for CH formation (R4-R6), starting with CHO or CHO + H, (R6) dominantly contributes to CH

Article

Figure 4. Potential energy profile of CH formation together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

formation via CHOH intermediate in kinetics, which has the highest barrier of 137.1 kJ mol⁻¹ with the reaction energy of -52.2 kJ mol⁻¹ shown as the green line. However, CHO hydrogenation to CH₂O (R7) has only the highest barrier and reaction energy of +89.1 and -47.9 kJ mol⁻¹ shown as the blue line, respectively. As a result, CHO can be more easily hydrogenated to CH₂O rather than CHOH and CH by CHOH dissociation.

3.2.3. CH_2 Formation. Similarly, CHO is dominantly hydrogenated to CH_2O on MnCu(211) surface, and as a result, CH_2O dissociation and hydrogenation are further investigated: Four reactions are responsible for CH_2 formation (R8–R11), in which R9 starts with CHO + H; meanwhile, CH_2O hydrogenation to CH_3O is also considered (R12). Figure 5 presents the potential energy profile of CH_2 and CH_3O formations together with the structures of ISs, TSs, and FSs.

$$CH_2O \rightarrow CH_2 + O$$
 (R8)

 $CHO + H \to CH_2 + O \tag{R9}$

$$CH_2O + H \rightarrow CH_2 + OH$$
 (R10)

$$CH_2O + H \rightarrow CH_2OH \rightarrow CH_2 + OH$$
 (R11)

$$CH_2O + H \rightarrow CH_3O$$
 (R12)

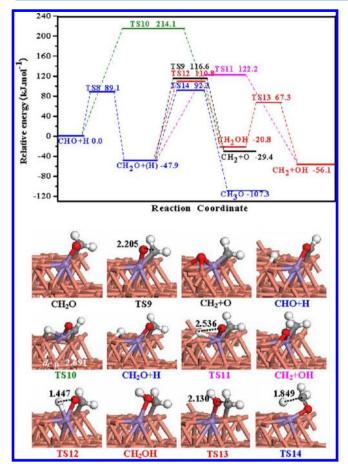
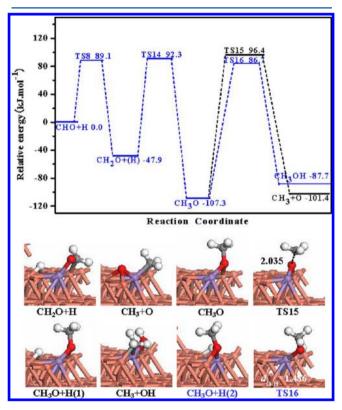


Figure 5. Potential energy profile of CH_2 formation together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

For CH₂ formation, in (R8), the direct dissociation of CH₂O via TS9 is endothermic by 18.5 kJ mol⁻¹ with an activation barrier of 164.5 kJ mol⁻¹. In TS9, CH₂ adsorbs at the Mn-Cu bridge-SE site, and O adsorbs at the Mn atom of step edge. The distance between C and O atoms is 2.205 Å. In (R9), CHO dissociation with hydrogen-assisted to CH₂ + O via TS10 requires an activation barrier of 214.1 kJ mol⁻¹, and it is exothermic by 29.4 kJ mol⁻¹. In TS10, CH adsorbs at the Mn-Cu bridge-SE site, O adsorbs at the Mn atom of step edge, and H adsorbs at the bridge-T-2 site. In (R10), the dissociation of CH_2O with hydrogen-assisted can form CH_2 + OH via TS11. This reaction needs an activation barrier of 170.1 kJ mol⁻¹, and it is slightly exothermic by 8.2 kJ mol⁻¹. In TS11, CH₂ adsorbs at the Mn-Cu bridge-SE site, O adsorbs at the Mn atom of step edge, and H adsorbs at the bridge-T-2 site. In (R11), CH₂O is first hydrogenated to CH₂OH via TS12, and this reaction is endothermic by 27.1 kJ mol⁻¹ with an activation barrier of 158.7 kJ mol⁻¹. In TS12, CH₂O adsorbs at the Mn-Cu bridge-SE site via both C and O atoms, and H adsorbs at the Mn atom of step edge; subsequently, CH₂OH further dissociates into CH₂ + OH via TS13 with an activation barrier of 88.1 kJ mol⁻¹, and it is exothermic by 35.3 kJ mol⁻¹. In TS13, OH adsorbs at the Mn atom of step edge, and CH₂ adsorbs at the Cu atom of step edge.

In (R12), CH₂O hydrogenation to CH₃O via TS14 is exothermic by 59.4 kJ mol⁻¹ with an activation barrier of 140.2 kJ mol⁻¹. In TS14, CH₂O adsorbs at the Mn atom of step edge via O atom. We can obtain from Figure 5 that among four reactions of CH₂ formation (R8–R11), starting with CHO + H, (R11) dominantly contributes to CH₂ formation via CH₂OH intermediate in kinetics, which has the highest barrier of 110.8 kJ mol⁻¹ with the reaction energy of -56.1 kJ mol⁻¹ in a red line. However, CH₂O hydrogenation to CH₃O (R12) has only the highest barrier and reaction energy of 92.3 and -107.3 kJ mol⁻¹ in a blue line, respectively. Thus, the intermediate CH₂O can be more easily hydrogenated to CH₃O rather than CH₂OH and CH₂ by CH₂OH dissociation.


3.2.4. CH_3 Formation. As mentioned above, CH_2O is dominantly hydrogenated to CH_3O , and as a result, CH_3O dissociation and hydrogenation reactions are further examined. Three reactions are responsible for CH_3 formation (R13~R15), in which R13 begins with CH_2O + H. Meanwhile, CH_3O hydrogenation to CH_3OH (R16) has been considered. Figure 6 presents the potential energy profile of CH_3 and CH_3OH formations together with the structures of ISs, TSs, and FSs.

$$CH_2O + H \rightarrow CH_3 + O$$
 (R13)

$$CH_3O \rightarrow CH_3 + O$$
 (R14)

$$CH_3O + H \rightarrow CH_3 + OH$$
 (R15)

$$CH_3O + H \rightarrow CH_3OH$$
 (R16)

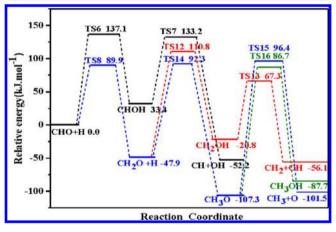


Figure 6. Potential energy profile of CH_3 formation together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

For CH₃ formation, in (R13), CH₂O dissociation with hydrogen-assisted leads to CH₃ + O, our result obtained by TS confirmation shows that CH₂O dissociation with hydrogenassisted prefers to form CH₂ + O + H rather than CH₃ + O. In (R14), the direct dissociation of CH₃O tends to produce CH₃ + O via TS15. This reaction requires an activation barrier of 203.7 kJ mol⁻¹, and it is slightly endothermic by 5.8 kJ mol⁻¹. In TS15, O adsorbs at the Mn–Cu bridge-SE site, CH₃ is away from the surface, and the distance between C and O atoms is 2.035 Å. In (R15), for CH₃O dissociation with hydrogenassisted into CH₃ + OH, similarly, our result obtained by TS confirmation shows that this reaction prefers to form CH₃ + O + H rather than CH₃ + OH. For CH₃O hydrogenation to CH₃OH in (R16) via TS16, this reaction requires an activation barrier of 194.0 kJ mol⁻¹, and it is endothermic by 19.6 kJ mol⁻¹. In TS16, CH₃O adsorbs at the Mn atom of step edge.

It can be seen from Figure 6 that among all reactions of CH₃ formation (R13~R15), starting from CHO + H, (R14) is the most favorable pathway in kinetics, which is also the only pathway for CH₃ formation via the direct dissociation of CH₃O. This reaction shown as a black line has the highest barrier of 96.4 kJ mol⁻¹ with the reaction energy of -101.4 kJ mol⁻¹. Meanwhile, CH₃O hydrogenation to CH₃OH (R16) shown as a blue line has the highest barrier 92.3 kJ mol⁻¹ with the reaction energy of -401.4 kJ mol⁻¹ with the reaction energy of -87.7 kJ mol⁻¹. The highest barriers of CH₃ and CH₃OH formations differ only by 4.1 kJ mol⁻¹, indicating that CH₃ formation is energetically compatible with CH₃OH formation on MnCu(211) surface.

3.3. Comparisons for CH_x (x = 1-3) and CH_3OH Formations. With respect to CHO + H, the potential energy profile for the most favorable pathway of CH_x (x = 1-3) and CH_3OH formations is summarized in Figure 7. CH formation

Figure 7. Potential energy profile for the most favorable pathway of CH_x (x = 1-3) and CH_3OH formations with respect to CHO + H.

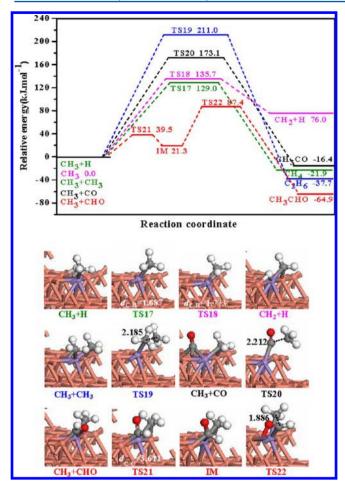
shown as a black line has the highest barrier and reaction energy of +137.1 and -52.2 kJ mol⁻¹. CH₂ formation shown as a red line has the highest barrier and reaction energy of +110.8 and -56.1 kJ mol⁻¹. CH₃ formation shown as a blue line has the highest barrier and reaction energy of +96.4 and -101.4 kJ mol⁻¹. Thus, CH₃ is more easily formed both thermodynamically and dynamically than CH and CH₂ species, namely among all CH_x (x = 1-3) species, CH_3 is the most favorable monomer via the reaction process of CO + $3H \rightarrow CHO + 2H \rightarrow CH_2O +$ $H \rightarrow CH_3O \rightarrow CH_3 + O$ (R3), (R7), (R12), and (R14), the corresponding rate-limiting step occurs at (R14) with an activation barrier of 203.7 kJ mol⁻¹. Meanwhile, CH₃OH formation in a green line has the highest barrier and reaction energy of +92.3 and -87.7 kJ mol⁻¹, which is formed by CO + $4H \rightarrow CHO + 3H \rightarrow CH_2O + 2H \rightarrow CH_3O + H \rightarrow CH_3OH$ (R3), (R7), (R12), and (R16), the corresponding rate-limiting step occurs at (R16) with an activation barrier 194.0 kJ mol⁻¹.

On the basis of the above results, we can obtain $CO + 3H \rightarrow CHO + 2H \rightarrow CH_2O + H \rightarrow CH_3O$ (R3), (R7), and (R12) as the common steps for the initial CO hydrogenation on MnCu(211) surface; starting from CH₃O, CH₃O dissociation to CH₃ is energetically compatible with CH₃O hydrogenation to CH₃OH due to the small difference for the activation barrier of the rate-limiting step by 9.7 kJ mol⁻¹. Our results on the MnCu(211) surface are quite different from those obtained on the pure Cu(211) surface.¹⁴

3.4. C_2H_5OH and Byproducts Formations. 3.4.1. CH_3 Hydrogenation, Dissociation, Coupling, and CO/CHO Insertion into CH_3 . C_2 oxygenate formations on Rh-based^{72,75,78} and Cu-based catalysts^{14,15} have shown that CH_3 species will undergo four types of reactions, CH_3 hydrogenation to CH_4 , CH_3 coupling to C_2H_6 , CO/CHO insertion into CH_3 to C_2 oxygenates, and CH_3 dissociation into CH_2 + H. As a result, five possible reactions (R17–R21) are investigated. Figure 8 presents the potential energy profile of these reactions together with the structures of ISs, TSs, and FSs.

$$CH_3 + H \rightarrow CH_4$$
 (R17)

$$CH_3 \rightarrow CH_2 + H$$
 (R18)


$$CH_3 + CH_3 \rightarrow C_2H_6 \tag{R19}$$

$$CH_3 + CO \rightarrow CH_3CO$$
 (R20)

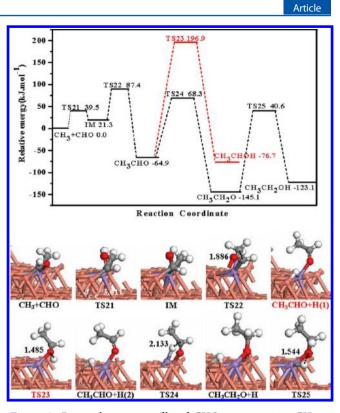
$$CH_3 + CHO \rightarrow CH_3CHO$$
 (R21)

In (R17), CH₃ hydrogenation to CH₄ via TS17 is exothermic by 21.9 kJ mol⁻¹, and it has an activation barrier of 129.0 kJ mol⁻¹. In TS17, both CH₃ and H adsorb at the Mn atom of step edge. In (R18), CH₃ dissociation into CH_2 + H via TS18 requires an activation barrier of 135.7 kJ mol⁻¹, and it is endothermic by 76.0 kJ mol⁻¹. In TS18, CH₂ adsorbs at the Mn-Cu bridge-SE site and H adsorbs at the Mn atom of step edge. In (R19), CH₃ coupling to C_2H_6 via TS19 has an activation barrier of 211.0 kJ mol⁻¹, and it is exothermic by 37.7 kJ mol⁻¹. In TS19, one CH₃ adsorbs at the Mn atom of step edge via C atom, and the other is away from the surface with the C-C bond length of 2.185 Å. In (R20), CO insertion into CH₃ to CH₃CO via TS20 has an activation barrier of 173.1 kJ mol^{-1} with the reaction energy of -16.4 kJ mol^{-1} . In TS20, CO adsorbs at the Mn atom of step edge with the C-C bond length of 2.212 Å. In (R21), CHO insertion into CH₃ first forms the intermediate IM via TS21, this reaction is endothermic by 21.3 kJ mol⁻¹ with an activation barrier of 39.5 kJ mol⁻¹. In TS21, CHO adsorbs at the Cu atom of step edge via C atom, and CH₃ adsorbs at the Mn-Cu bridge-SE site with the C-C bond length of 3.611 Å. Subsequently, IM further forms CH₃CHO via TS22, and this reaction is exothermic by 86.2 kJ mol⁻¹ with an activation barrier of 66.1 kJ mol⁻¹. In TS22, CHO adsorbs at the Mn–Cu bridge-SE site, and CH₃ adsorbs at the Mn atom of step edge with the C-C bond length of 1.886 Å.

It can be seen from Figure 8 that starting from CH_3 species, CH_3 hydrogenation, dissociation, coupling, and CO insertion into CH_3 are more difficult to occur because of the high activation barrier, whereas, CHO insertion into CH_3 to CH_3CHO is the most favorable, which dominantly contributes to C_2 oxygenates formation of ethanol precursor. Meanwhile, it is noted that when CHO insertion into CH_3 occurs, CHO can also be hydrogenated to CH_2O with the activation barrier and reaction energy of 89.1 and -47.9 kJ mol⁻¹, respectively, which

Figure 8. Potential energy profile of CH_4 , CH_2 , C_2H_6 , CH_3CO , and CH_3CHO formations starting from CH_3 together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

is energetically compatible with CHO insertion into CH₃ to CH₃CHO; thus, partial CHO involves in hydrogenation to CH₂O, and the rest inserts into CH₃ to CH₃CHO. Interestingly, previous studies on the pure Cu(211) surface have shown that CHO hydrogenation to CH₂O is more preferable than CH₃CHO formation via CHO insertion into CH₃.¹⁴


3.4.2. CH₃CHO Hydrogenation to Ethanol on MnCu(211) Surface. As mentioned above, C₂ oxygenates of ethanol precursor are mainly formed by CHO insertion into CH₃, and C₂H₅OH are formed by CH₃CHO hydrogenation, in which two possible pathways exist, one is atomic H interacting with α -C atom of CH₃CHO to CH₃CH₂O, and the other is atomic H associating with O atom of CH₃CHO to CH₃CHOH. Figure 9 presents the potential energy profile of these reactions together with the structures of ISs, TSs, and FSs.

$$CH_3CHO + H \rightarrow CH_3CHOH$$
 (R22)

 $CH_3CHO + H \rightarrow CH_3CH_2O$ (R23)

$$CH_3CH_2O + H \rightarrow C_2H_5OH$$
 (R24)

In R22, CH₃CHO hydrogenation to CH₃CHOH via TS23 is exothermic by 11.8 kJ mol⁻¹ with an activation barrier of 261.8 kJ mol⁻¹. In TS23, CH₃CHO adsorbs at the Mn atom of step edge. In R23, CH₃CHO hydrogenation to CH₃CH₂O via TS24

Figure 9. Potential energy profile of CHO insertion into CH_3 to CH_3CHO and further hydrogenation to ethanol together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

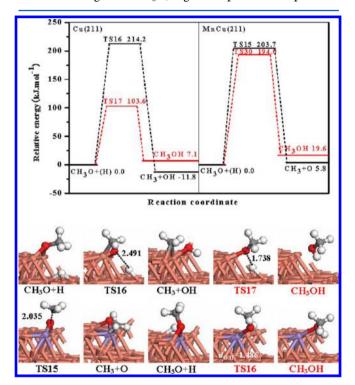
is exothermic by 80.2 kJ mol⁻¹ with an activation barrier of 133.2 kJ mol⁻¹. In TS24, CH₃CHO adsorbs at the Cu atom of step edge, and H adsorbs at the Mn atom of step edge. As a result, CH₃CHO is mainly hydrogenated to CH₃CH₂O, followed by its hydrogenation to ethanol via TS25. This reaction is endothermic by 22.0 kJ mol⁻¹ with an activation barrier of 185.7 kJ mol⁻¹. In TS25, both CH₃CH₂O and H adsorb at the Mn atom of step edge.

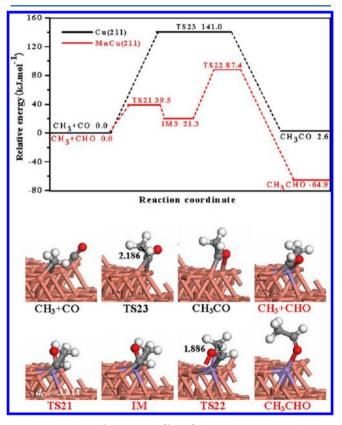
3.5. Brief Summary of Ethanol Formation. Above DFT results show that $CO + 3H \rightarrow CHO + 2H \rightarrow CH_2O + H \rightarrow$ CH₃O (R3), (R7), and (R12) is an optimal pathway for the initial CO hydrogenation on MnCu(211) surface. Starting with CH₃O, ethanol formation first goes through CH₃O dissociation to produce CH₃, subsequently, CHO inserts into CH₃ to form CH₃CHO, and further CH₃CHO is successively hydrogenated to ethanol. CH₃ formation by direct CH₃O dissociation is the rate-limiting step of ethanol formation with the activation barrier and reaction energy of 203.7 and 5.8 kJ mol⁻¹, respectively. Meanwhile, CHO insertion into CH₃ to CH₃CHO is also a key step for the formation of ethanol precursor. Further, starting from CH₃, since CHO insertion into CH₃ to CH₃CHO is the most favorable pathway among all reactions related to CH₃ species, and the MnCu(211) surface exhibits a better selectivity to C2 oxygenates rather than hydrocarbons. On the other hand, CH₃OH is formed by CH₃O hydrogenation to CH₃OH, which is the rate-limiting step of CH₃OH formation with the activation barrier and reaction energy of 194.0 and 19.6 kJ mol⁻¹, respectively. More importantly, CH₃ formation via direct CH₃O dissociation is energetically compatible with CH₃OH formation via CH₃O hydrogenation.

For most of elementary reactions involved in ethanol formation, the step sites around the Mn atom of the MnCu(211) surface are the active centers, and this result is consistent with the properties of the (211) surface containing steps, which exhibits good catalytic performance in catalytic reactions. 62,64,75 As a result, the step sites around the Mn atom of the MnCu(211) surface play an important role in promoting ethanol formation from syngas.

3.6. Comparisons for Ethanol Formation Between MnCu(211) and Cu(211) Surfaces. It has been well accepted that CH_x and C_2 oxygenates are the two crucial steps for ethanol formation from syngas.^{31,41,43,72,79} Our results also show that CH_3 and CH_3CHO on MnCu(211) surface are two crucial steps. In order to probe into the roles of promoter Mn and its effect on ethanol formation from syngas over Cu-based catalysts, we further compare these two key steps between MnCu(211) and Cu(211) surfaces.¹⁴

3.6.1. CH₃ and CH₃OH Formation. Our previous results on Cu(211) surface have shown that the initial CO hydrogenation is via an optimal pathway of CO + 3H \rightarrow CHO + 2H \rightarrow CH₂O + H \rightarrow CH₃O,¹⁴ which is consistent with those on MnCu(211) surface. Starting from CH₃O, Figure 10 presents the potential




Figure 10. Potential energy profile of CH_3 and CH_3OH formations starting from CH_3O on Cu(211) and RhCu(211) surfaces together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

energy profile of CH₃ and CH₃OH formations on both Cu(211) and MnCu(211) surfaces, respectively. First, CH₃ is mainly formed via CH₃O + H \rightarrow CH₃ + OH on Cu(211), while CH₃ is mainly formed via CH₃O \rightarrow CH₃ + O on MnCu(211). Second, the activation barriers of CH₃ and CH₃OH formation on Cu(211) differ largely by 110.6 kJ mol⁻¹, indicating that CH₃O hydrogenation to CH₃OH is superior to CH₃O dissociation to CH₃ on Cu(211), whereas the corresponding difference values of activation barriers on MnCu(211) is only 9.7 kJ mol⁻¹, suggesting that CH₃O

dissociation to CH₃ is energetically compatible with CH₃O hydrogenation to CH₃OH on MnCu(211). Third, the activation barrier of CH₃ formation on MnCu(211) is lower by 10.5 kJ mol⁻¹ than that on Cu(211), namely, CH₃ formation is more preferred in kinetics on MnCu(211) surface. Finally, the activation barrier of CH₃OH formation on MnCu(211) is significantly higher by 90.4 kJ mol⁻¹ than that on Cu(211), indicating that CH₃OH formation on MnCu(211) can be suppressed compared with that on Cu(211).

The above results show that, after introducing Mn promoter into Cu catalyst, the MnCu(211) surface presents a new reaction pathway of CH₃ formation, CH₃ sources can be significantly increased, and CH₃OH formation can be significantly decreased. As a result, more CH₃ can involve in ethanol formation from syngas, and the productivity and selectivity of ethanol can be effectively improved.

3.6.2. C_2 Oxygenates of Ethanol Precursor. As shown in Figure 11, on Cu(211) surface,¹⁴ CO insertion into CH₃ to

Figure 11. Potential energy profiles of CHO insertion into CH_3 to CH_3CHO on Cu(211) and CO insertion into CH_3 to CH_3CO on MnCu(211) together with the structures of ISs, TSs, and FSs. Bond lengths are in Å. See Figure 2 for color coding.

CH₃CO mainly contributes to C₂ oxygenates formation of ethanol precursor, the highest barrier and reaction energy shown as a black line are 141.0 and 2.6 kJ mol⁻¹, respectively, while on MnCu(211) surface, CHO insertion into CH₃ to CH₃CHO mainly contributes to C₂ oxygenates formation, the highest barrier and reaction energy shown as a red line are +87.4 and -64.9 kJ mol⁻¹, respectively; thus, C₂ oxygenates formation of ethanol precursor is more easily formed in kinetics and thermodynamics on MnCu(211) than that on Cu(211).

On the other hand, according to the Eyring's transition state theory (TST),¹⁴ we have further calculated the rate constants of

these key steps at different temperatures on Cu(211) and MnCu(211) surfaces, respectively; the rate constant are obtained as the following formula:

$$k = \frac{k_{\rm b}T}{h} \left(\frac{p^0}{RT}\right)^{1-n} \exp\left[-\frac{\Delta_{\rm r}G_{\rm m}^{\ \ddagger}}{RT}\right]$$

where *T* is the reaction temperature, *k* is the rate constant, k_b , *h*, p^0 , and *R* are Boltzmann's constant, Planck's constant, standard atmospheric pressure, and the fundamental gas constant, respectively, and *n* is the number of reactants.

Previous studies have reported that Cu-based catalysts exhibit a good catalytic activity to C_2 oxygenates formation from syngas, where the reaction temperature ranges from 553 to 583 K.^{12,14,80–82} Therefore, the rate constants of C_2 oxygenates formation at T = 550, 575, and 600 K have been calculated, respectively, as listed in Table 2.

Table 2. Rate Constant k for the Elementary Reactions of Ethanol Precursor Formation on Cu(211) and MnCu(211) Surfaces at the Different Temperatures

		rate constant k/s^{-1}		
	elementary reaction	550 K	575 K	600 K
Cu(211)	$\begin{array}{c} \mathrm{CH}_3 + \mathrm{CO} \rightarrow \\ \mathrm{CH}_3 \mathrm{CO} \end{array}$	7.98	31.76	112.79
MnCu(211)	$\begin{array}{c} \mathrm{CH}_3 + \mathrm{CHO} \\ \rightarrow \mathrm{CH}_3 \mathrm{CHO} \end{array}$	6.91 × 10 ⁴	1.67×10^{5}	3.77×10^5

It can be obtained from Table 2 that the rate constant k of C₂ oxygenates formation increases with the increase of temperature on both Cu(211) and MnCu(211) surfaces. Meanwhile, at the same temperature, the rate constant of CH₃CHO formation on MnCu(211) is much larger than that of CH₃CO formation on Cu (211), which means that CH₃CHO formation on MnCu(211) is much easier than CH₃CO formation on Cu(211). Thus, compared to the pure Cu(211), Mn-promoted MnCu(211) can facilitate C₂ oxygenates formation, and enhance the productivity and selectivity to ethanol from syngas.

Above results mean that introducing promoter Mn into Cu catalyst not only leads to a new formation pathway of C_2 oxygenates but also promotes C_2 oxygenates formation, and as a result, the productivity and selectivity to ethanol from syngas can be improved.

3.7. Comparisons for Ethanol Formation Between MnCu(211) and Rh Surfaces. Nowadays, Rh-based catalysts have been used in catalyzing ethanol formation from syngas due to the unique efficiency and selectivity; thus, previous DFT studies on Rh catalyst obtained by Choi and Liu⁷² as well as Kapur et al.⁷⁵ have been compared with our present results on MnCu catalyst. Table 3 lists the corresponding activation barrier and reaction energy of the key steps.

First, CO + 3H \rightarrow CHO + 2H \rightarrow CH₂O + H \rightarrow CH₃O is the common optimal pathway on MnCu and Rh surfaces;⁷⁵ Beginning with CH₃O, on Rh(111) and Rh(211) surfaces, the differences of activation barrier between CH₃ and CH₃OH formations are 51.2 and 19.3 kJ mol⁻¹, respectively; whereas, on the MnCu(211) surface, the differences are only 9.7 kJ mol⁻¹; thus, compared to Rh catalyst, CH₃ formation is energetically compatible with CH₃OH formation, namely, more CH₃ sources can be obtained to participate the C₂ oxygenates formation.

Table 3. Activation Barriers and Reaction Energies of the

Reactions for CO Insertion into CH ₃ and CH ₃				
Hydrogenation to CH ₄ , as Well as CH ₃ and CH ₃ OH				
Formations on Cu and Rh Surfaces				

surface	elementary reaction	$E_2/kJ \text{ mol}^{-1}$	$\Delta H/k$ J mol ⁻¹	
MnCu(211)	$CH_3 + CHO \rightarrow CH_3CHO$	87.4	-64.9	
,	$CH_3 + H \rightarrow CH_4$	129.0	-21.9	
	$CH_3O + H \rightarrow CH_3 + OH$	203.7	5.8	
	$CH_3O + H \rightarrow CH_3OH$	194.0	19.6	
$Rh(111)^a$	$CH_3 + CO \rightarrow CH_3CO$	89.7	14.5	
	$CH_3 + H \rightarrow CH_4$	55.0	-19.3	
	$CH_3O \rightarrow CH_3 + O$	102.3	-18.3	
	$CH_3O + H \rightarrow CH_3OH$	88.8	3.9	
$Rh(111)^b$	$CH_3 + CO \rightarrow CH_3CO$	126.4	11.6	
	$CH_3O \rightarrow CH_3 + O$	97.5	78.2	
	$CH_3O + H \rightarrow CH_3OH$	46.3	-28.9	
$Rh(211)^b$	$CH_3 + CO \rightarrow CH_3CO$	129.3	38.6	
	$CH_3O \rightarrow CH_3 + O$	111.9	-33.8	
	$CH_3O + H \rightarrow CH_3OH$	92.6	17.4	
^{<i>a</i>} The studies by Choi and Liu in ref [72]. ^{<i>b</i>} The studies by Neeti Kapur				

"The studies by Choi and Liu in ref [72]. "The studies by Neeti Kapur et al. in ref [75].

Second, starting from CH₃, Choi and Liu⁷² have found that on Rh(111) surface, CH₄ formation by CH₃ hydrogenation is more favorable than CH₃CO formation by CO insertion into CH₃, which means that Rh catalyst has a better selectivity to CH₄ rather than C₂ oxygenates. In contrast, Mn-prompted MnCu catalyst exhibits a better selectivity for C₂ oxygenates rather than CH₄. In addition, the activation barrier of CHO insertion into CH₃ to CH₃CHO on MnCu catalyst is compatible and/or smaller than that on Rh catalyst.

Compared to Rh catalyst, above results show that introducing promoter Mn into Cu catalyst not only facilitate ethanol formation due to more CH_3 sources and less CH_3OH formation, but also effectively suppress CH_4 formation, as a result, the productivity and selectivity of ethanol can be well improved on MnCu catalyst.

3.8. General Discussions. On the pure Cu(211) surface,¹⁴ CH₂ is very difficult to be formed due to the higher activation barrier compared to CH₃OH formation, as a result, less CH₃ sources can be received to join in CO insertion into CH₃ to CH₃CO, and then, CH₃CO is successively hydrogenated to ethanol. However, on the MnCu(211) surface, CH₃ formation is energetically compatible with CH₃OH formation. Moreover, the activation barrier of CH₃ formation is decreased, and the activation barrier of CH₃OH formation is significantly increased; thus, more CH3 sources can be obtained to participate in CHO insertion into CH₃ to CH₃CHO, and CH₃CHO is successively hydrogenated to ethanol. Meanwhile, C₂ oxygenates formed via CHO insertion into CH₃ on MnCu(211) are more preferable both kinetically and thermodynamically than that on Cu(211). More importantly, compared with the traditional Rh catalyst,^{72,75} more CH₃ sources can be obtained on the MnCu(211) surface, and CH₄ and CH₃OH formations can be effectively suppressed on MnCu(211) surface. Further, analyzing the reaction pathways on Cu(211) and MnCu(211) surfaces, introducing the Mn atom into Cu catalyst not only produces the new adsorption sites but also leads to the new formation pathway of CH₃ and C_2 oxygenates, suggesting that the promoter Mn at a step site of MnCu(211) surface can render the steps more active than Cu at a step site.

On the basis of analysis, we can obtain that by introducing promoter Mn into Cu catalyst, CH_3OH formation via CH_3O hydrogenation and CH_4 formation via CH_3 hydrogenation are minimized, and CH_3 sources via direct CH_3O dissociation and C_2 oxygenates via CHO insertion into CH_3 are maximized. As a result, the productivity and selectivity on MnCu(211) surface can be well improved compared those for to Cu(211) and Rh surfaces.

4. CONCLUSIONS

In this study, density functional theory calculations have been used to systematically investigate the mechanism of ethanol formation from syngas on the MnCu(211) surface, and to clarify the effect of promoter Mn into Cu-based catalysts. Our results suggest that CO + 3H \rightarrow CHO + 2H \rightarrow CH₂O + H \rightarrow CH₃O is the initial step of CO hydrogenation. Starting from CH₃O, the most favorable monomer among all CH_x (x = 1-3) species, CH₃, is formed via direct CH₃O dissociation. CH₃OH is formed via CH₃O hydrogenation. Moreover, CH₃ formation is energetically compatible with CH₃OH formation. Further, starting from CH₃ species, CHO insertion into CH₃ to CH₃CHO is the most favorable pathway leading to C₂ oxygenates formation of ethanol precursor, and then CH₃CHO is hydrogenated to ethanol via CH₃CH₂O intermediates.

Compared to the Cu(211) surface, by introducing promoter Mn into Cu catalyst, CH₃ sources are maximized, and CH₃OH formation is minimized, and the C₂ oxygenates formation of ethanol precursor via CHO insertion into CH₃ is more favorable both in kinetics and thermodynamics. Meanwhile, the new adsorption sites for adsorbed species and new formation pathway of key intermediates (e.g., CH₃ and C₂ oxygenates of ethanol precursor) are presented. As a result, the productivity and selectivity of ethanol formation from syngas can be improved on MnCu catalyst, which means that Mn is a promising promoter for improved ethanol formation from syngas on Cu-based catalyst.

ASSOCIATED CONTENT

Supporting Information

The only one imaginary frequency corresponding to the transition state (Table S1) and the coordinates of all optimized structures (Table S2) involved in ethanol synthesis from syngas on MnCu(211) surface have been presented in detail. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel.: +86 351 6018239. Fax: +86 351 6041237. E-mail: wangbaojun@tyut.edu.cn; quantumtyut@126.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is financially supported by the National Natural Science Foundation of China (Nos. 21276003 and 21276171) and the National Natural Science Younger Foundation of China (Nos. 20906066 and 21103120). The authors are especially thankful for two anonymous reviewers for their helpful suggestions on the quality improvements of our present paper.

REFERENCES

(1) Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Enhanced Ethanol Production Inside Carbon-Nanotube Reactors Containing Catalytic Particles. *Nat. Mater.* **2007**, *6*, 507–511.

(2) Henstra, A. M.; Sipma, J.; Rinzema, A.; Stams, A. J. M. Microbiology of Synthesis gas Fermentation for Biofuel Production. *Curr. Opin. Biotechnol.* **2007**, *18*, 200–206.

(3) Velu, S.; Satoh, N.; Gopinath, C. S.; Suzuki, K. Oxidative Reforming of Bio-ethanol over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production. *Catal. Lett.* **2002**, *82*, 145–152.

(4) Deluga, D. A.; Salge, J. R.; Schmidt, L. D.; Verykios, X. E. Renewable Hydrogen from Ethanol by Autothermal Reforming. *Science* **2004**, *303*, 993–997.

(5) Palsson, B. O.; Faith-Afshar, S.; Rudd, D. F.; Lightfoot, E. N. Biomass as a Source of Chemical Feedstocks: An Economic Evaluation. *Science* **1981**, *213*, 513–517.

(6) Ng, T. K.; Busche, R. M.; Mcdonald, C. C.; Hardy, R. W. F. Production of Feedstock Chemicals. *Science* **1983**, *219*, 733–740.

(7) Subramani, V.; Gangwal, S. K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. *Energ. Fuel.* **2008**, *22*, 814–839.

(8) Burch, R.; Petch, M. I. Investigation of the Synthesis of Oxygenates from Carbon Monoxide/Hydrogen Mixtures on Supported Rhodium Catalysts. *Appl. Catal., A* **1992**, *88*, 39–60.

(9) Yin, H. M.; Ding, Y. J.; Luo, H. Y.; Zhu, H. J.; He, D. P.; Xiong, J. M.; Lin, L. W. Influence of Iron Promoter on Catalytic Properties of Rh-Mn-Li/SiO₂ for CO Hydrogenation. *Appl. Catal., A* **2003**, *243*, 155–164.

(10) Lu, Y. W.; Yu, F.; Hu, J.; Liu, J. Catalytic Conversion of Syngas to Mixed Alcohols over Zn-Mn Promoted Cu-Fe Based Catalyst. *Appl. Catal., A* **2012**, *429–430*, 48–58.

(11) Zhao, Y. H.; Yang, M. M.; Sun, D. P.; Su, H. Y.; Sun, K. J.; Ma, X. F.; Bao, X. H.; Li, W. X. Rh-Decorated Cu Alloy Catalyst for Improved C₂ Oxygenate Formation from Syngas. *J. Phys. Chem. C* **2011**, *115*, 18247–18256.

(12) Xu, R.; Wei, W.; Li, W. H.; Hu, T. D.; Sun, Y. H. Fe Modified CuMnZrO₂ Catalysts for Higher Alcohols Synthesis from Syngas: Effect of Calcination Temperature. *J. Mol. Catal. A* **2005**, *234*, 75–83.

(13) Boz, I.; Sahibzada, M.; Metcalfe, I. S. Kinetics of the Higher Alcohol Synthesis over a K-Promoted CuO/ZnO/Al₂O₃ Catalyst. *Ind. Eng. Chem. Res.* **1994**, *33*, 2021–2028.

(14) Zhang, R. G.; Wang, G. R.; Wang, B. J. Insights into the Mechanism of Ethanol Formation from Syngas on Cu and an Expanded Prediction of Improved Cu-based Catalyst. *J. Catal.* **2013**, 305, 238–255.

(15) Wang, G. R.; Zhang, R. G.; Wang, B. J. Insight into the Preference Mechanism for C–C Chain Formation of C_2 Oxygenates and the Effect of Promoters in Syngas Conversion over Cu-based Catalysts. *Appl. Catal.*, A 2013, 466, 77–89.

(16) Zhang, R. G.; Sun, X. C.; Wang, B. J. Insight into the Preference Mechanism of $CH_x(x = 1-3)$ and C–C Chain Formation Involved in C₂ Oxygenate Formation from Syngas on the Cu(110) Surface. *J. Phys. Chem.* C **2013**, *117*, 6594–6606.

(17) Gupta, M.; Smith, M. L.; Spivey, J. Heterogeneous Catalytic Conversion of dry Syngas to Ethanol and Higher alcohols on Cu-Based Catalysts. *ACS Catal.* **2011**, *1*, 641–656.

(18) Slaa, J. C.; van Ommen, J. G.; Ross, J. R. H. The Synthesis of Higher Alcohols Using Modified Cu/ZnO/Al₂O₃ Catalysts. *Catal. Today* **1992**, *15*, 129–148.

(19) Xu, R.; Yang, C.; Wei, W.; Li, W. H.; Sun, Y. H.; Hu, T. D. Fe-Modified CuMnZrO₂ Catalysts for Higher Alcohols Synthesis from Syngas. J. Mol. Catal. A 2004, 221, 51–58.

(20) Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X. Synthesis of Ethanol via Syngas on Cu/SiO₂ Catalysts with Balanced Cu⁰-Cu⁺ Sites. *J. Am. Chem. Soc.* 2012, *134*, 13922–13925.
(21) Mahdavi, V.; Peyrovi, M. H.; Islami, M.; Mehr, J. Y. Synthesis of Higher Alcohols from Syngas over Cu-Co₂O₃/ZnO, Al₂O₃ Catalyst. *Appl. Catal.*, A 2005, *281*, 259–265.

(23) Bastein, A. G. T. M.; van Der Boogert, W. J.; van Der Lee, G.; Luo, H.; Schuller, B.; Ponec, V. Selectivity of Rh Catalysts in the Syngas Reactions. On the Role of Supports and Promoters. *Appl. Catal.* **1987**, *29*, 243–260.

(24) Chuang, S. C.; Goodwin, J. G., Jr; Wender, I. The Effect of Alkali Promotion on CO Hydrogenation over Rh/TiO₂. *J. Catal.* **1985**, 95, 435–446.

(25) Kiennemann, A.; Breault, R.; Hindermann, J. P.; Laurin, M. Ethanol Promotion by the Addition of Cerium to Rhodium–Silica Catalysts. *J. Chem. Soc.* **1987**, *83*, 2119–2128.

(26) Luo, H. Y.; Zhang, W.; Zhou, H. W.; Huang, S. Y.; Lin, P. Z.; Ding, Y. J.; Lin, L. W. A Study of Rh-Sm-V/SiO₂ Catalysts for the Preparation of C₂-Oxygenates from Syngas. *Appl. Catal., A* **2001**, *214*, 161–166.

(27) Spivey, J. J.; Egbebi, A. Heterogeneous Catalytic Synthesis of Ethanol from Biomass-Derived Syngas. *Chem. Soc. Rev.* 2007, 36, 1514–1518.

(28) Ma, X. F.; Deng, H. Q.; Yang, M. M.; Li, W. X. Atomic and Molecular Adsorption on RhMn Alloy Surface: A First Principles study. J. Chem. Phys. 2008, 129, 244711–244718.

(29) Stroppa, A.; Mittendorfer, F.; Andersen, J. N.; Parteder, G.; Allegretti, F.; Srunev, S.; Netzer, E. P. Adsorption and Dissociation of CO on Bare and Ni-Decorated Stepped Rh(553) Surfaces. *J. Phys. Chem.* C **2009**, *113*, 942–949.

(30) Egbebi, A.; Schwartz, V.; Overbury, S. H.; Spivey, J. J. Effect of Li Promoter on Titania-Supported Rh Catalyst for Ethanol Formation from CO Hydrogenation. *Catal. Today* **2010**, *149*, 91–97.

(31) Haider, M. A.; Gogate, M. R.; Daivs, R. J. Fe-promotion of Supported Rh Catalysts for Direct Conversion of Syngas to Ethanol. J. *Catal.* **2009**, *261*, 9–16.

(32) Mo, X. H.; Gao, J.; Goodwin, J. G., Jr Role of Promoters on Rh/ SiO₂ in CO Hydrogenation: A Comparison Using DRIFTS. *J. Catal.* **2009**, *147*, 139–149.

(33) Gao, J.; Mo, X. H.; Chien, A. C. Y.; Torres, W.; Goodwin, J. G., Jr CO Hydrogenation on Lanthana and Vanadia Doubly Promoted Rh/SiO₂ Catalysts. J. Catal. **2009**, 262, 119–126.

(34) Mo, X. H.; Gao, J.; Umnajkaseam, N.; Goodwin, J. G., Jr; La, V. and Fe Promotion of Rh/SiO_2 for CO Hydrogenation: Effect on Adsorption and Reaction. *J. Catal.* **2009**, *267*, 167–176.

(35) Ma, X. F.; Su, H. Y.; Deng, H. Q.; Li, W. X. Carbon Monoxide Adsorption and Dissociation on Mn-Decorated Rh(111) and Rh(553) Surfaces: A First-Principles Study. *Catal. Today* **2011**, *160*, 228–233.

(36) Ojeda, M.; Granados, M. L.; Rojas, S.; Terreros, P.; Garcia-Garc, F. J.; Fierro, J. L. G. Manganese-Promoted Rh/Al₂O₃ for C₂-Oxygenates Synthesis from Syngas: Effect of Manganese Loading. *Appl. Catal., A* **2004**, *261*, 47–55.

(37) van Der Berg, F. G. A.; Glezer, J. H. E.; Sachtler, W. M. H. The Role of Promoters in CO/H₂ Reactions: Effects of MnO and MoO₂ in Silica-Supported Rhodium Catalysts. *J. Catal.* **1985**, *93*, 340–352.

(38) de Jong, K. P.; Glezer, J. H. E.; Kuipers, H. P. C. E.; Knoester, A.; Emeis, C. A. Highly Dispersed Rh/SiO_2 and $Rh/MnO/SiO_2$ Catalysts: 1. Synthesis, Characterization, and CO Hydrogenation Activity. *J. Catal.* **1990**, *124*, 520–529.

(39) Treviño, H.; Sachtler, W. M. H. On the Nature of Catalyst Promotion by Manganese in CO Hydrogenation to Oxygenates over RhMn/NaY. *Catal. Lett.* **1994**, *27*, 251–258.

(40) Ma, H. T.; Yuan, Z. Y.; Wang, Y.; Bao, X. H. Temperature-Programmed Surface Reaction Study on C_2 -Oxygenate Synthesis over SiO₂ and Nanoporous Zeolitic Material Supported Rh–Mn Catalysts. *Surf. Interface Anal.* **2001**, *32*, 224–227.

(41) Mei, D. H.; Rousseau, R.; Kathmann, S. M.; Glezakou, V. A.; Engelhard, M. H.; Jiang, W. L.; Wang, C. M.; Gerber, M. A.; White, J. F.; Stevens, D. J. Ethanol Synthesis from Syngas over Rh-based/SiO₂ Catalysts: A Combined Experimental and Theoretical Modeling Study. *J. Catal.* **2010**, *271*, 325–342. (42) Luo, H. Y.; Lin, P. Z.; Xie, S. B.; Zhou, H. W.; Xu, C. H.; Huang, S. Y.; Lin, L. W.; Liang, D. B.; Yin, P. L.; Xin, Q. The Role of Mn and Li Promoters in Supported Rhodium Catalysts in the Formation of Acetic Acid and Acetaldehyde. *J. Mol. Catal.* A **1997**, *122*, 115–123.

(43) Li, F. Y.; Jiang, D. E.; Zeng, X. C.; Chen, Z. F. Mn Monolayer Modified Rh for Syngas-to-Ethanol Conversion: A First-Principles Study. *Nanoscale* **2012**, *4*, 1123–1129.

(44) Ngo, H.; Liu, Y. Y.; Murata, K. Effect of Secondary Additives (Li, Mn) in Fe-Promoted Rh/TiO₂ Catalysts for the Synthesis of Ethanol from Syngas. *React. Kinet. Mech. Catal.* **2011**, *102*, 425–435.

(45) Ding, M. Y.; Qiu, M. H.; Wang, T. J.; Ma, L. L.; Wu, C. Z.; Liu, J. G. Effect of Iron Promoter on Structure and Performance of CuMnZnO Catalyst for Higher Alcohols Synthesis. *Appl. Energ.* **2012**, *97*, 543–547.

(46) Liu, Y. Y.; Murata, K.; Inaba, M.; Takahara, I.; Okabe, K. Mixed Alcohols Synthesis from Syngas over Cs- and Ni-Modified Cu/CeO₂ Catalysts. *Fuel* **2013**, *104*, 62–69.

(47) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. *J. Chem. Phys.* **1990**, *92*, 508–517.

(48) Delley, B. From Molecules to Solids with the DMol³ Approach. *J. Chem. Phys.* **2000**, *113*, 7756–7764.

(49) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

(50) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy. *Phys. Rev. B* **1992**, 45, 13244–13249.

(51) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-Adjusted ab Initio Pseudopotentials for the first row Transition Elements. *J. Chem. Phys.* **1987**, *86*, 866–872.

(52) Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Ab Initio Energy-Adjusted Pseudopotentials for Elements of Groups 13– 17. *Mol. Phys.* **1993**, *80*, 1431–1441.

(53) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. *Phys. Rev. B* **1964**, *136*, B864–B871.

(54) Halgren, T. A.; Lipscomb, W. N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. *Chem. Phys. Lett.* **1977**, *49*, 225–232.

(55) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley and Sons: New York, 1994.

(56) Ponec, V. Alloy Catalysts: The Concepts. *Appl. Catal., A* **2001**, 222, 31–45.

(57) Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I. Role of Steps in N_2 Activation on Ru(0001). *Phys. Rev. Lett.* **1999**, 83, 1814–1817.

(58) Dahl, S.; Tornqvist, E.; Chorkendorff, I. Dissociative Adsorption of N_2 on Ru(0001): A Surface Reaction Totally Dominated by Steps. *J. Catal.* **2000**, *192*, 381–390.

(59) Klier, K.; Hess, J. S.; Herman, R. G. Structure Sensitivity of Methane Dissociation on Palladium Single Crystal surfaces. *J. Chem. Phys.* **1997**, *107*, 4033–4043.

(60) Uetsuka, H.; Watanabe, K.; Kimpara, K.; Kunimori, K. Structure Sensitivity in the Kinetics and the Dynamics of CO Oxidation over Stepped Pd(335) Studied by the Molecular Beam Infrared Chemiluminescence Technique: Determination of Working Site During the Steady-State Reaction. *Langmuir* **1999**, *15*, 5795–5799.

(61) Liu, Z. P.; Jenkins, S. J.; King, D. A. Step-Enhanced Selectivity of NO Reduction on Platinum-Group Metals. *J. Am. Chem. Soc.* 2003, 125, 14660–14661.

(62) Zambelli, T.; Wintterlin, J.; Trost, J.; Ertl, G. Identification of the "Active Sites" of a Surface-Catalyzed reaction. *Science* **1996**, 273, 1688–1690.

(63) Xu, Y.; Mavrikakis, M. Adsorption and Dissociation of O_2 on Gold Surfaces: Effect of Steps and Strain. J. Phys. Chem. B 2003, 107, 9298–9307.

(64) Liu, Z. P.; Hu, P. General Rules for Predicting Where a Catalytic Reaction Should Occur on Metal Surfaces: A Density Functional Theory Study of C–H and C–O Bond Breaking/Making on Flat, Stepped, Kinked Metal Surfaces. J. Am. Chem. Soc. 2003, 125, 1958-1967.

(65) Zhang, J.; Cao, X. M.; Hu, P.; Zhong, Z. Y.; Borgna, A.; Wu, P. Density Functional Theory Studies of Ethanol Decomposition on Rh(211). *J. Phys. Chem. C* 2011, *115*, 22429–22437.

(66) Mavrikakis, M.; Bäumer, M.; Freund, H. J.; Nørskov, J. K. Structure Sensitivity of CO Dissociation on Rh Surfaces. *Catal. Lett.* **2002**, *81*, 153–156.

(67) Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. The Active Site of Methanol Synthesis Over Cu/ZnO/Al₂O₃ Industrial Catalysts. *Science* **2012**, 336, 893–897.

(68) Bihlmayer, G.; Kurz, Ph.; Blügel, S. Overlayers, Interlayers, and Surface Alloys of Mn on the Cu(111) Surface. *Phy. Rev. B* 2000, *62*, 4726–4732.

(69) Flores, T.; Hansen, M.; Wuttig, M. Structure and Growth of Mn on Cu(100). *Surf. Sci.* **1992**, *279*, 251–264.

(70) D'Addato, S.; Finetti, P. An Extended X-ray Absorption Fine Structure Study of Mn Ultrathin Films Grown on Cu(100). *Surf. Sci.* **2001**, 471, 203–208.

(71) Pan, W.; Popescu, R.; Meyerheim, H. L.; Sander, D.; Robach, O.; Ferrer, S.; Lin, M. T.; Kirschner, J. Stress and Structure of $c(2 \times 2)$ and p2gg MnCu(001) Surface Alloy. *Phys. Rev. B* **2005**, *71*, 174439–1–7.

(72) Choi, Y. M.; Liu, P. Mechanism of Ethanol Synthesis from Syngas on Rh(111). J. Am. Chem. Soc. 2009, 131, 13054–13061.

(73) Campana, L.; Selloni, A.; Weber, J.; Goursot, A. Cation Siting and Dynamical Properties of Zeolite Offretite from First-Principles Molecular Dynamics. *J. Phys. Chem. B* **1997**, *101*, 9932–9939.

(74) Chen, Q. L.; Tang, C. Q.; Zheng, G. First-Principles Study of TiO₂ Anatase(101) Surfaces Doped with N. *Phys. B: Condensed. Matter.* 2009, 404, 1074–1078.

(75) Kapur, N.; Hyun, J.; Shan, B.; Nicholas, J. B.; Cho, K. Ab Initio Study of CO Hydrogenation to Oxygenates on Reduced Rh Terraces and Stepped Surfaces. J. Phys. Chem. C 2010, 114, 10171–10182.

(76) Grabow, L. C.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO_2 and CO Hydrogenation. *ACS Catal.* **2011**, *1*, 365–384.

(77) Studta, F.; Abild-Pedersena, F.; Wu, Q. X.; Jensen, A. D.; Temel, B.; Grunwaldte, J. D.; Nørskova, J. K. CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. *J. Catal.* **2012**, *293*, 51–60.

(78) Zhao, Y. H.; Sun, K. J.; Ma, X. F.; Liu, J. X.; Sun, D. P.; Su, H. Y.; Li, W. X. Carbon Chain Growth by Formyl Insertion on Rhodium and Cobalt Catalysts in Syngas Conversion. *Angew. Chem., Int. Ed.* **2011**, *50*, 5335–5338.

(79) Deluzarche, A.; Hindermann, J. P.; Kieffer, R.; Breault, R.; Kiennernann, A. Ethanol Formation Mechanism from $CO+H_2$ on a Rh/TiO₂ Catalyst. *J. Phys. Chem.* **1984**, *88*, 4993–4995.

(80) Slaa, J. C.; van Ommen, J. G.; Ross, J. R. H. The Synthesis of Alcohols Using $Cu/ZnO/Al_2O_3+(Ce \text{ or }Mn)$ Catalysts. *Catal. Today* **1995**, *2*, 79–89.

(81) Pan, W. X.; Cao, R.; Griffin, G. L. Direct Alcohol Synthesis Using Copper/Cobalt Catalysts. J. Catal. 1988, 114, 447–456.

(82) Nunan, J. G.; Herman, R. G.; Klier, K. Higher Alcohol and Oxygenate Synthesis over Cs/Cu/ZnO/M₂O₃(M Al, Cr) Catalysts. J. Catal. **1989**, *116*, 222–229.