
Fuel 123 (2014) 285-292

Fuel

journal homepage: www.elsevier.com/locate/fuel

CH_4 dissociation on the perfect and defective MgO(001) supported Ni₄

Hongyan Liu^{a,b,c}, Botao Teng^{a,d}, Maohong Fan^{a,*}, Baojun Wang^{c,*}, Yulong Zhang^e, H. Gordon Harris^a

^a Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA

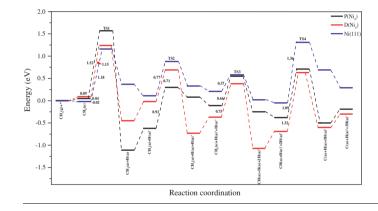
^b College of Chemistry and Environment Engineering, Shanxi Datong University, Datong, Shanxi 037009, China

^c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

^d College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

^e Western Research Institute, Laramie, WY 82070, USA

HIGHLIGHTS


G R A P H I C A L A B S T R A C T

- DFT method is employed to investigate the interaction between Ni and MgO.
- Charge transfers from MgO to adspecies through Ni are studied.
- Strong Ni-MgO interaction can increase the dissociation activity of CH₄.
- Calculation confirms that strong Ni-MgO interaction can resist carbon deposition.
- New design approaches for high activity and free-carbon catalysts are proposed.

ARTICLE INFO

Article history: Received 18 October 2013 Received in revised form 24 December 2013 Accepted 25 January 2014 Available online 5 February 2014

Keywords: CH₄ dissociation Ni MgO support Metal-support interaction Density functional theory

ABSTRACT

A theoretical understanding of CH₄ dissociation on Ni-based catalysts is of great importance for the development of CH₄ reforming catalysts with high activity and carbon-deposition resistance. Based on comparisons of CH₄ dissociation on perfect and defective MgO supported Ni₄, as well as Ni(111), the effects of the strong interactions between Ni₄ and MgO on CH₄ dissociation are systematically investigated by density functional theory (DFT) calculations. Our results indicate that the interaction between Ni₄ and the defective MgO is stronger than for the perfect MgO. Consequently, the adsorptions of $CH_{v}(x = 0-4)$ are weaker than those on the perfect Ni₄/MgO. Hirshfeld charge analysis shows that electrons are transferred from MgO to Ni₄, then to CH_x adspecies; the stronger interactions between Ni₄ and MgO lead to less electronic transfer from Ni₄ to adspecies, which result in weaker adsorption of CH_x. Potential energy surface calculations of CH₄ dissociation indicate that there are lower energy barriers for the sequent dissociations of $CH_4 \rightarrow CH_2 + 2H$ and an appropriate barrier of CH oxidation matching up with that of CH_2 further dissociation on the model catalyst of Ni₄ supported on defective MgO. This might be an elementary requirement for an excellent CH₄ reforming catalyst, and may shed light on experimental catalyst development. © 2014 Elsevier Ltd. All rights reserved.

The step dissociations of CH₄:

1. Introduction

* Corresponding authors. Tel.: +1 307 766 5633; fax: +1 307 766 6777 (M. Fan). Tel.: +86 351 6018239; fax: +86 351 6041237 (B. Wang).

 $CH_4 \rightarrow CH_3 + H$

(R1)

E-mail addresses: mfan@uw Wang).

$$CH_3 \rightarrow CH_2 + H$$
 (R2)

$$CH_2 \rightarrow CH + H$$
 (R3)

$$CH \rightarrow C + H$$
 (R4)

are very important for CH₄/CO₂ reforming to produce syngas (CO and H₂) and reduce the emission of two major green-house gases, CO₂ [1–4] and CH₄. The key to CH₄/CO₂ reforming is to develop a catalyst with high reaction activity and good carbon deposition resistance [5–9]. Ni-based catalysts might have potential industrialization prospects, due to high activity and selectivity, as well as low cost. However, these catalysts must overcome a significant hurdle, i.e., carbon deposition, which leads to rapid deactivation. It has been found that oxide supports considerably affect the catalytic activity and carbon deposition on Ni-based catalysts in methane reforming with CO₂. Wei et al. [10] pointed out that Ni supported on nanosized ZrO₂, MgO and γ -Al₂O₃ was highly active and stable. Hwang et al. [11] reported that clay-supported Ni exhibited high catalytic activities and long lifetimes. Similar results were obtained by Hou et al. [12] on Al₂O₃-supported Ni based catalysts.

Among all kinds of oxide supports, MgO is one of best choices for Ni-based catalysts owing to its large and relatively well-defined surface structure and stoichiometry [13], as well as its low oxygen vacancy formation energy. Experimental results suggest that defects on MgO have significant effects on the morphologies and properties of Ni-based catalysts [14-16]. Hu and Ruckenstein [17-21] found that a NiO/MgO catalyst had excellent anti-coking performance, which was attributed to the high dispersion of reduced Ni species, basicity of the support surface, and strong nickel-support interaction [22]. Feng et al. [23] reported that the NiO/MgO catalyst showed a higher activity after calcination at 800 °C, which was mainly due to the strong interactions between metal and support. Although the experimental results show that MgO might greatly improve the performance of Ni-based catalysts in CH₄ reforming, the electronic nature of the effect of the interaction between Ni and MgO on CH_x adsorption, as well as the reaction mechanism and carbon deposition in the CH₄/CO₂ reforming process is still uncertain.

Rapid development of the density functional theory (DFT) technique has resulted in a powerful tool for understanding chemical reactions and designing catalysts at an atomic level [24–27]. DFT has been used to investigate the dissociation of CH_4 on pure Ni [28–30], Pt [31], Rh [32], as well as the strong interactions between metal and support on adsorption and reaction [33–36]. Studies on the interaction of metal Ni and support MgO have been reported [37,38], however, to the best of our knowledge, the effect of the interaction between Ni and MgO on CH_x adsorption and dissociation of CH_4 on Ni/MgO catalyst, as well as their electronic nature, have been seldom reported.

In this work, using the DFT method, the adsorption behaviors of CH_x (x = 0-4) and H, as well as the potential energy surfaces of CH_4 dissociations on perfect and defective MgO-supported Ni₄ are systematically investigated. The effects of the strong interactions between Ni₄ and MgO on CH_x adsorption and CH_4 dissociation are systematically studied, and their corresponding electronic nature are explained by Hirshfeld charge analysis.

2. Computation details

2.1. Computational methods

The DFT calculations are performed using the Cambridge Sequential Total Energy Package (CASTEP) [39,40] in Material Studio 6.0 of Accelry Inc. All the calculations are conducted with the generalized gradient approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) exchange correlation function [41]. Ionic cores are described by ultrasoft pseudopotential [42] and the Kohn-Sham one-electron states are expanded in a plane wave basis with a cutoff energy of 340 eV. An electronic temperature of 0.1 k_BT is utilized during calculations with the final results extrapolated to 0 K. Brillouin zone integration is approximated by a sum over special *k*-points using the Monkhorst–Pack method [43], which is set as $2 \times 2 \times 1$. Geometries are optimized until the following converging criteria are met: energy, force, and maximum displacement are converged to 2.0×10^{-5} eV/atom, 0.05 eV/Å, and 2×10^{-3} Å, respectively. Spin polarization is considered in all calculations. Transition states (TS) are located by using complete linear synchronous transit (LST) or quadratic synchronous transit (QST) methods [44]. Firstly, LST maximization is performed by an energy minimization in the directions conjugated to reaction pathway. Then, the TS approximation is used to perform OST maximization. From that point, another conjugate gradient minimization is carried out. The cycle had been repeated until a stationary point is located. The convergence criterion for transition state calculations was set to root-mean-square force of 0.25 eV/Å per atom.

The adsorption energy, $E_{ads}(X)$, is calculated as follows

$$E_{ads}(X) = E(X - Ni_4/MgO) - E(X) - E(Ni_4/MgO)$$
(E1)

where *X* represents adsorbed species, $E(X - Ni_4/MgO)$ is the total energy of the species adsorbed on Ni₄/MgO, E(X) is the energy of free *X* species, and $E(Ni_4/MgO)$ is the energy of Ni₄/MgO. Therefore, a negative value corresponds to an energetically favorable adsorption. The adsorption energy of adspecies on Ni₄/MgO can be divided into the deformation energy of adspecies ($E_{def}(X)$), and catalyst ($E_{def}(Ni_4/MgO)$), as well as the interaction energy between adspecies and catalyst (E_{int}). Correspondingly, $E_{ads}(X)$ of adspecies can be expressed as

$$E_{\rm ads}(X) = E_{\rm def}(X) + E_{\rm def}(Ni_4/MgO) + E_{\rm int}$$
(E2)

$$E_{\text{def}}(X) = E(X') - E(X) \tag{E3}$$

$$E_{def}(Ni_4/MgO) = E(Ni_4/MgO') - E(Ni_4/MgO)$$
(E4)

$$E_{\text{int}} = E(X - Ni_4/MgO) - E(X') - E(Ni_4/MgO')$$
(E5)

where E(X') and $E(Ni_4/MgO')$ are the energies of the deformed configurations for the X species and substrate after adsorption, respectively. Meanwhile, the energy of strong metal-support interaction (SMSI) is defined as:

$$E_{\text{SMSI}} = E(X - \text{Ni}_4/\text{MgO}) - E(X - \text{Ni}'_4) - E(\text{MgO}')$$
(E6)

where $E(X-Ni'_4)$ and E(MgO') represent the energy of Ni₄ cluster and MgO substrate upon adsorption, respectively.

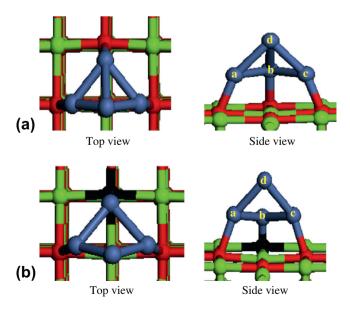
2.2. Models

A Ni₄/MgO(001) modeling catalyst, which has been proved to be very stable and representative of Ni-based catalysts in the literature, is used in the present work [45–47]. The lattice constant of MgO(001) is optimized to be 4.301 Å, which is consistent with the experimental value, 4.213 Å [48]. A four-layer MgO(001) slab is used for both perfect and defective Ni₄/MgO catalysts, in which the bottom two layers are fixed in bulk position [49]. The defective Ni₄/MgO modeling catalyst is established by removing a neutral oxygen atom from the surface of MgO(001) [50,51].

3. Results

3.1. MgO(001) supported Ni₄ cluster

3.1.1. Perfect surface


The most stable adsorption configuration of Ni₄ cluster on the perfect MgO(001) surface is selected as the model catalyst, and denoted as P(Ni₄). Its structure is shown in Fig. 1(a), and the corresponding geometrical parameters are listed in Table 1. In P(Ni₄), three Ni atoms (Ni_a, Ni_b and Ni_c) directly interact with three oxygen atoms of the support surface, while the Ni_d atom is located at the bridge site between Ni_a and Ni_c. It is noted that the Ni_a-Ni_c bond in Ni₄ cluster is cleaved and elongated to 3.046 Å, which enhances the interaction between Ni₄ and MgO. Correspondingly, the Ni₄ cluster is deformed into a butterfly shape, and the dihedral angle Ni_a-Ni_b-Ni_c of the tetrahedron is opened to 103.2°.

3.1.2. Defective surface

To explore the effect of the defective MgO(001) surface on CH₄ dissociation, the structures of Ni₄ cluster on MgO(001) with an oxygen-vacancy were also investigated in the present work. The most stable configuration of Ni₄ on the defective MgO surface is denoted as D(Ni₄) and shown in Fig. 1(b). This is different from the structure of Ni₄ on the perfect MgO(001); Ni_b is located above the oxygen vacancy site and about 1.362 Å above the surface in D(Ni₄). Meanwhile, similar sites of Ni_a, Ni_c and Ni_d are observed for D(Ni₄). The dihedral angle Ni_a–Ni_b–Ni_d–Ni_c of the tetrahedron expands to 119.4°, which is larger than that of P(Ni₄).

The calculated interaction energies between Ni₄ and MgO are -3.72 eV for P(Ni₄) and -5.06 eV for D(Ni₄), respectively. Obviously, the stronger interaction occurs when Ni₄ is adsorbed on the defective MgO surface, in contrast with that of the perfect one. Compared with the values of Ni₄ on spinel-like and non-spinel Al₂O₃ (-2.27 and -2.79 eV) [52], Ni₄ is more stable on MgO than on Al₂O₃.

In order to shed insight on the electronic interactions between Ni_4 and MgO support, Hirshfeld charges of Ni_4 are calculated and listed in Table 2.

Fig. 1. Side and top views of Ni₄ supported on perfect and oxygen-vacancy MgO(001) surface (a) Ni₄ on the perfect MgO(001) surface and (b) Ni₄ on the defective MgO(001) surface (to visually show the location of the missing O atom, a black sphere was used to represent O vacancy).

As can be seen in Table 2, the total charges of Ni₄ in P(Ni₄) and D(Ni₄) are -0.22 and -0.37 e, respectively. The higher negative charge on Ni₄ in D(Ni₄) indicates that more electrons are transferred from the defective MgO surface to Ni₄, which leads to the stronger interaction between MgO and Ni₄. This is consistent with the calculated interaction energy between Ni₄ and MgO. However, the charge transfer is different from the results by Li et al. [52], who observed that the electrons of Ni₄ cluster are transferred to γ -Al₂O₃ when Ni₄ cluster was deposited on γ -Al₂O₃. In addition, we further analyze the *d*-band structure of Ni(111) and Ni₄ supported on MgO, as shown in Fig. 2, and calculate the *d*-band center by E7 [53,54].

$$\varepsilon_{\rm d} = \frac{\int_{-\infty}^{\infty} E\rho_{\rm d}(E)d\varepsilon}{\int_{-\infty}^{\infty} \rho_{\rm d}(E)d\varepsilon} \tag{E7}$$

where ρ_d represents the density of states projected onto the Ni atoms' *d* band; *E* is the energy of *d*-band. As shown in Fig. 2, the *d*-band of Ni₄ in D(Ni₄) becomes narrow compared to that in P(Ni₄) and Ni(111). The calculated *d*-band centers of Ni(111), P(Ni₄) and D(Ni₄) are -1.42, -1.21 and -1.19 eV, respectively. Obviously, the *d*-band centers of P(Ni₄) and D(Ni₄) upshift to the Fermi level compared to that of Ni(111). In general, the closer the *d*-band center to the Fermi level, the more reactive is the catalyst [55]. Therefore, the possible activity order of the three model catalysts might be: D(Ni₄) > P(Ni₄) > Ni(111). However, this deduction should be further tested, according to the potential energy surface of the CH₄ dissociation reaction, due to the strong metal-support interaction between Ni and MgO.

3.2. CH₄ dissociation

To give a deeper insight into the CH_4 dissociation mechanism, as well as the support effects of MgO, the potential energy surfaces (PES) of methane dissociation reactions on the perfect and defective MgO supported on Ni₄, are systematically investigated. For further comparison, the PES of CH_4 dissociation on Ni(111) without MgO reported in our previous work [25], is also discussed herein.

• $CH_4 \rightarrow CH_3 + H$

*CH*₄ adsorption: As shown in Fig. 3, CH₄ only molecularly adsorbs at the top site of Ni_d atom. The geometrical parameters of CH₄ adsorbed on Ni₄/MgO are listed in Supporting Materials. The bond lengths of C–H on P(Ni₄) and D(Ni₄) remain 1.096 Å, which are the same as the free CH₄ molecule, indicating the very weak interaction between CH₄ and Ni₄/MgO. The distances of C–Ni_d are 3.463 and 2.901 Å, and the adsorption energies are 0.05 and 0.09 eV on P(Ni₄) and D(Ni₄), respectively. The positive adsorption energies are consistent with that for CH₄ adsorption on spinel Al₂O₃ supported Ni₄ (0.04 eV) [52]. Similarly, when CH₄ adsorbs on Ni(111), the bond length of C–H is 1.097 Å with an adsorption energy of –0.02 eV, indicating their weak interaction. Based on the bond lengths of C–H and the adsorption energies above, the interactions between Ni₄ and MgO have little effects on the adsorption behaviors of CH₄ on Ni₄/MgO.

*CH*₃ *adsorption*: The most stable configurations of CH₃ on both Ni₄/MgO models are adsorbed at the bridge site of Ni_c and Ni_d, in which a C–H bond points to the vicinal Ni_d atom and the other two are located at the side of the Ni_c–Ni_d. The C–Ni_d and C–Ni_c bond lengths are 2.095 and 1.956 Å on P(Ni₄), while 2.150 and 1.930 Å on D(Ni₄), respectively. The C–H bonds, paralleled to the Ni_c–Ni_d bond, are elongated to 1.139 and 1.124 Å on P(Ni₄) and D(Ni₄), respectively. Meanwhile, the other two C–H bonds are almost elongated to 1.105 Å. The corresponding adsorption energies are -2.36 and -1.89 eV on P(Ni₄) and D(Ni₄), respectively, which

Table 1 Interaction distances and relevant dihedral angles of the optimized structures of Ni₄/MgO system (bond in Å, and angle in °).

	Ni _a -Ni _b	Ni _b -Ni _c	Ni _c -Ni _d	Ni _a -Ni _d	Ni _b -Ni _d	$\Phi(Ni_a-Ni_b-Ni_d-Ni_c)$
P(Ni ₄)	2.225	2.239	2.296	2.320	2.342	103.2
D(Ni ₄)	2.269	2.321	2.232	2.272	2.895	119.4

Table 2

Hirshfeld charges for Ni₄/MgO and CH_x (x = 0-3) adsorbed on supported Ni₄/MgO (in e).

		$P(Ni_4)$	D(Ni ₄)
Ni ₄ /MgO	Ni ₄	-0.22	-0.37
CH ₃ /Ni ₄ /MgO	CH ₃	-0.12	-0.10
	Ni ₄	-0.09	-0.25
CH ₂ /Ni ₄ /MgO	CH ₂	-0.14	-0.12
	Ni ₄	-0.03	-0.22
CH/Ni ₄ /MgO	СН	-0.15	-0.14
	Ni ₄	-0.08	-0.24
C/Ni ₄ /MgO	С	-0.20	-0.19
	Ni ₄	-0.04	-0.22
H/Ni ₄ /MgO	Н	-0.10	-0.06
	Ni ₄	-0.13	-0.31

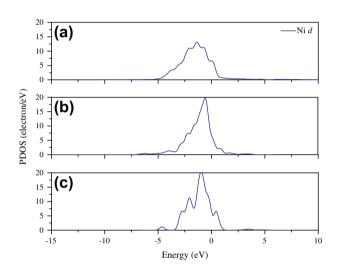


Fig. 2. The PDOS for Ni_4 on the three catalysts (a) Ni(111), (b) perfect Ni_4/MgO and (c) defective Ni_4/MgO.

are both stronger than that on Ni(111), -1.81 eV. Similar adsorption energy increase was also reported by Li et al. [52], in which CH₃ adsorbs at the interface (C bonded Al and Ni) with adsorption energy of -2.50 eV on Ni₄/Al₂O₃. These increases of adsorption energies on Ni₄/support might be attributed to the interaction of metal and support. To give insight into the support's effect on the adsorption of CH₃, the adsorption energies of CH₃ on both Ni₄/MgO are divided into three parts, as seen in Table 3. Obviously, the interaction energies between CH3 and Ni4 are the main contribution to the adsorption energies. The different interaction energies between CH_3 and Ni_4 are caused by the different interactions between supports and Ni. For further verification, Hirshfeld charge is analyzed. It can be seen from Table 2 that Hirshfeld charges of CH_3 are -0.12 and -0.10 e on $P(Ni_4)$ and $D(Ni_4)$; meanwhile the charges of Ni₄ are -0.09 and -0.25 e, respectively. Obviously, the sum of Hirshfeld charges of CH₃ and Ni₄ almost equals that of Ni₄ cluster on MgO before CH₃ adsorption. Therefore, from the electronic effect of the interaction between Ni₄ and MgO, it can be deduced that Ni₄ cluster firstly obtains electrons from the MgO support, and then transfers electrons to adspecies. Correspondingly, Ni₄ cluster on MgO acts as an electronic reservoir and conduit between the adspecies and support.

H adsorption: H prefers to adsorb at the bridge sites of Ni_a and Ni_d atoms of P(Ni₄) and D(Ni₄) surfaces to form two H–Ni bonds with bond lengths of 1.566–1.737 Å. The corresponding adsorption energies of H on P(Ni₄) and D(Ni₄) are –2.95 and –2.84 eV, respectively, which is slightly stronger than that on Ni(111)(–2.73 eV). Li et al. [52] reported that H prefers to adsorb at the interface between metal and support on the Ni₄/ γ –Al₂O₃ with an adsorption energy of –2.96 eV, followed by another interface adsorption (–2.63 eV). We also examined the adsorption behaviors of H at the two similar sites on P(Ni₄), and found that H only adsorbs on the interface between Ni₄ and perfect MgO with an adsorption energy of –2.73 eV, which is less stable than that at the bridge site of Ni_a and Ni_d.

CH₄ dissociates into co-adsorbed CH₃ and H: When CH₄ adsorbed on the top of Ni_d atom of P(Ni₄) dissociates into CH₃ and H, one of the C–H bonds is elongated to 2.713 Å with C–Ni_d and H–Ni_d bond lengths of 1.935 and 1.530 Å, respectively, as seen in the transition state structure P(TS1); H then moves to the bridge site of Ni_a–Ni_d with two H-Ni bonds of 1.601 and 1.617 Å. Meanwhile, the remaining CH₃ moves to the bridge site of Ni_c–Ni_d, and the C–Ni_c and C– Ni_d bonds are 1.980 and 2.032 Å, respectively. The activation energy barrier of CH₄ dissociation on P(Ni₄) surface is 1.52 eV with an enthalpy change of –1.16 eV.

The dissociation of CH₄ on D(Ni₄) is very similar to that on P(Ni₄), with an energy barrier of 1.15 eV and enthalpy change of -0.54 eV. It was reported by Li et al. [52] that the CH₄ dissociation energy barrier is only 0.71 eV on Ni₄/Al₂O₃. Obviously, different supports (Al₂O₃ and MgO) result in different metal-support interactions, and further lead to different barriers in the CH₄ dissociation reaction.

• $CH_3 \rightarrow CH_2 + H$

*CH*₂ *adsorption*: CH₂ prefers to adsorb at the threefold site of Ni_b–Ni_c–Ni_d on the perfect and defective MgO surfaces. The adsorption energies are -4.71 and -4.69 eV, respectively, which are both slightly stronger than that on Ni(111) (-4.66 eV). Similarly to the adsorption of CH₃ on Ni₄/MgO, the interaction between CH₂ and Ni₄ has the dominant contribution to CH₂ adsorption on Ni₄/MgO. Hirshfeld charges of CH₂ are -0.14 and -0.12 e on P(Ni₄) and D(Ni₄), respectively.

*CH*³ *dissociates into co-adsorbed CH*² *and H*: For the dissociation of CH₃ on P(Ni₄), the C–H bond is elongated to 2.652 Å in P(TS2), then H moves to the bridge site of Ni_a–Ni_d and forms two H–Ni bonds with bond lengths of 1.577 and 1.682 Å. Meanwhile, the CH₂ fragment still remains at the bridge site of Ni_c and Ni_d atoms. The corresponding C–Ni_c and C–Ni_d are reduced to1.868 and 1.875 Å, respectively. The shorter C–Ni bond lengths in CH₂ on P(Ni₄), compared with those in CH₃ on P(Ni₄), indicate stronger interactions between CH₂ and P(Ni₄) than those between CH₃ and substrate. The activation energy barrier of CH₃ dissociation on P(Ni₄) is 0.92 eV, with an enthalpy change of -0.41 eV.

A similar structure was obtained for CH₃ dissociation on D(Ni₄), as seen in D(TS2). The corresponding energy barrier and enthalpy change on D(Ni₄) are 0.71 and -0.71 eV. Obviously, the activation energy on D(Ni₄) is lower than that on the perfect Ni₄/MgO surface, and is the same as that on Ni(111).

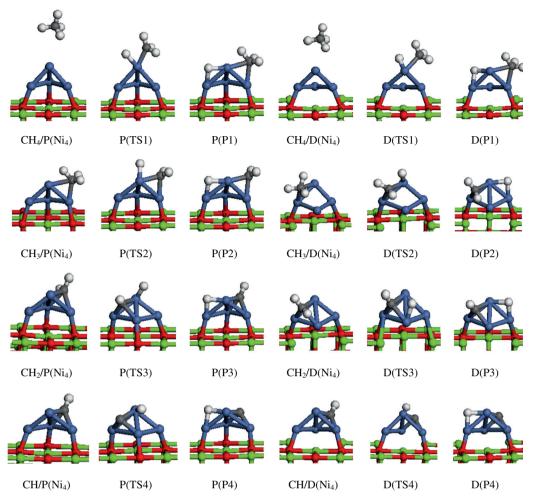


Fig. 3. Side view of the geometries of reactants, transition states, and products on the $Ni_4/MgO(001)$ surfaces.

• $CH_2 \rightarrow CH + H$

CH adsorption: The most stable configurations of CH on P(Ni₄) and D(Ni₄) are shown in Fig. 3, in which the C atoms locate at the 3-fold site of Ni_b, Ni_c and Ni_d atoms. The C–Ni bond lengths are about 1.808–1.866 Å. The corresponding adsorption energies are -6.80 and -6.60 eV, respectively, which are also stronger than that on Ni(111), -6.24 eV. This can be attributed to the strong interaction between CH and Ni₄. Hirshfeld charges of CH are -0.15 and -0.14 e on P(Ni₄) and D(Ni₄), respectively.

CH₂ dissociation into co-adsorbed CH and H: Similar to the dissociations of CH₄ and CH₃, one of the C–H bonds is elongated to 2.385 Å for CH₂ dissociation, as seen in P(TS3). CH remains at the 3-fold site of Ni_{b,c,d} atoms, while H moves to the bridge site of Ni_a–Ni_d atoms. The activation barrier of CH₂ dissociation on P(Ni₄) is 0.66 eV with an enthalpy change of -0.14 eV. Although the dissociation structure of CH₂ on D(Ni₄) is very similar to that on P(Ni₄), the corresponding energy barrier is 0.75 eV, which is relatively higher than that on P(Ni₄). In addition, the dissociation barrier of CH₂ on Ni(111) is 0.37 eV, which is much lower than that on Ni₄/MgO surfaces. The enthalpy changes on D(Ni₄) and Ni(111) are -0.70 and -0.19 eV, respectively.

• CH \rightarrow C + H

C adsorption: C prefers to adsorb at the threefold sites of Ni atoms on $P(Ni_4)$ and $D(Ni_4)$ surfaces, with adsorption energies of

-7.73 and -7.52 eV, respectively, which is also stronger than that on Ni(111), -6.90 eV. As shown in Table 3, the increase of adsorption energies on Ni₄/MgO are mainly derived from the interaction energies of C and Ni₄. Furthermore, Hirshfeld charge of C is also the largest among CH_x and H on the corresponding P(Ni₄) and D(Ni₄), which is consistent with its highest adsorption energy. Those results indicate that the more that electrons transfer to adspecies, the stronger adsorption of CH_x on Ni₄/MgO.

CH dissociates into co-adsorbed *C* and *H*: The dissociation of the CH fragment on $P(Ni_4)$ is quite similar to that of CH_2 , in which the C–H bond is elongated to 1.910 Å, and then is broken, as seen in P(TS4). The left C atom remains at the 3-fold site of Ni atoms; while the H atom moves to the bridge site of Ni_a – Ni_d . This dissociation reaction on $P(Ni_4)$ is exothermic with an enthalpy change of 0.12 eV, and the activation energy barrier is 1.09 eV. Similar dissociation process can be observed for CH via D(TS4) on $D(Ni_4)$ with an higher dissociation barrier of 1.32 eV and a lower enthalpy change of 0.09 eV. The dissociation energy barrier of CH on Ni(111) is 1.36 eV, with an enthalpy change of 0.55 eV.

4. Discussion

4.1. Potential energy surface of CH₄ dissociation

An ideal catalyst for CH_4 reforming should have a relatively high activity and selectivity and excellent resistance of

Table 3

Adsorption energy, deformation energy, and interaction energy for CH_x (x = 0-4) and H adsorption on Ni₄/MgO surfaces (in eV).

		$P(Ni_4)$	D(Ni ₄)	Ni(111)
CH₄				
	Eads	0.05	0.09	-0.02
	E _{def.substrate}	0.03	0.02	0
	E _{def.X}	-0.02	-0.02	0
	$E_{int(X)}$	0.04	0.08	-0.02
	E _{SMSI}	-3.03	-5.04	
CH ₃				
	E _{ads}	-2.36	-1.89	-1.81
	E _{def.substrate}	0.23	0.04	0.05
	E _{def.X}	0.51	0.46	0.48
	$E_{int(X)}$	-3.10	-2.39	-2.34
	E _{SMSI}	-3.11	-5.08	
CH ₂				
c ₂	E _{ads}	-4.71	-4.69	-4.66
	E _{def.substrate}	0.38	0.17	0.04
	E _{def.X}	0.45	0.45	0.01
	$E_{int(X)}$	-5.54	-5.31	-4.70
	E _{SMSI}	-3.46	-5.26	
СН				
en	Eads	-6.80	-6.60	-6.24
	E _{def.substrate}	0.18	0.12	0.07
	E _{def.X}	0.03	0.04	0.03
	$E_{int(X)}$	-7.01	-6.76	-6.22
	E _{SMSI}	-3.63	-5.29	
С				
c	E _{ads}	-7.65	-7.36	-6.90
	E _{def.substrate}	0.27	0.15	0.12
	$E_{def,X}$	0.00	-0.03	0
	$E_{int(X)}$	-7.92	-7.48	-6.92
	E _{SMSI}	-3.67	-5.26	0102
Н				
	E_{ads}	-2.95	-2.84	-2.74
	$E_{def.substrate}$	0.07	0.06	-0.04
	$E_{def.Substrate}$	0.07	0.00	0
	$E_{int(X)}$	-2.85	-2.89	-2.70
	E _{SMSI}	-3.24	-5.34	2.70

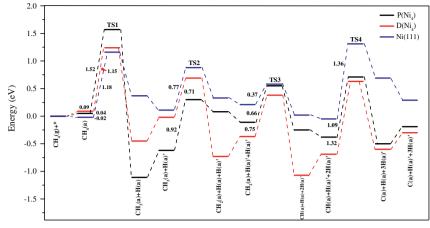
carbon-deposition. The biggest difficulty for the catalyst development for CH_4 reforming is that a catalyst with high activity generally leads to a high rate of carbon-deposition. How to solve the dilemma? Could theoretical work shed light on this challenge? To explore the possible effects of MgO support on CH_4 dissociation and give an insight into the rate balance of catalytic activity and carbon deposition, the potential energy surfaces of the CH_4 dissociation on $P(Ni_4)$ (black line), $D(Ni_4)$ (red¹ line) and Ni(111) surface (blue line) are systematically calculated and shown in Fig. 4.

As shown in Fig. 4, $CH_x(a) + H(a)$ denotes the co-adsorbed $CH_x(-a)$ and H(a); while $CH_x(a) + H(a) + H(a)'$ denotes the co-adsorbed $CH_x(a)$, H(a) and another isolated adsorbed H(a). It is well known that the first C–H bond dissociation is very difficult for its kinetically high energy barrier and thermodynamically endothermic reaction, as seen on the Ni(111) surface. However, it becomes a thermodynamically exothermic reaction for $CH_4 \rightarrow CH_3 + H$ dissociation when the Ni₄ cluster is supported on the perfect and defective MgO surfaces. Furthermore, the energy barrier of C–H dissociation on D(Ni₄), 1.15 eV, slightly decreases compared with that on Ni(111), 1.18 eV, indicating a relatively high reaction rate

of CH₄ dissociation when Ni nano-particles was supported on the defective MgO support.

For the dissociation of CH₃ intermediate, its energy barrier on D(Ni₄) is also slightly lower than that on Ni(111). However, the energy barrier of $CH_2 \rightarrow CH + H$ reaction on $D(Ni_4)$ (0.75 eV) is much higher than that on Ni(111), 0.37 eV; meanwhile, the barriers of $CH \rightarrow C + H$ dissociation on $D(Ni_4)$ and Ni(111) are both as high as about 1.32-1.36 eV. It is well known that the dominant reason to deactivation for CH₄ reforming catalysts is carbon deposition, including the formation of fused ring carbon by the polymerization of CH fragments, as well as the graphite carbon by the aggregation of C atoms on the surface of catalysts. Both kinds of carbon deposition might cover the active site on Ni-based catalysts, leading to the rapid decrease in activity of CH₄ reforming. Due to the lower energy barrier of CH₂ dissociation on Ni(111), the rate of carbon deposition might be very high, which is consistent with the experimental facts that the initial activity of Ni nanoparticles is very high and decreases very fast when non-interaction exists between metal and support [56]. However, according to the comparison of energy barriers on Ni(111) and $D(Ni_4)$, the slightly lower energy barriers of the sequent dissociations of $CH_4 \rightarrow CH_2 + 2H$ and higher barriers of the CH₂ further dissociation on D(Ni₄), indicate that the D(Ni₄) catalyst has high activity of CH₄ reforming and good resistance of carbon deposition. This result is well consistent with the experimental data that the CH₄ dissociation rate is high and stable when Ni nano-particles was supported on MgO with high surface area, which might have more oxygen vacancies than the perfect one [57,58].

Different from Ni₄ cluster supported on the defective MgO support, the energy barrier of $CH_4 \rightarrow CH_3 + H$ reaction on $P(Ni_4)$ is much higher than those on Ni(111) and $D(Ni_4)$, which suggests a much lower activity of CH_4 reforming on $P(Ni_4)$. This calculation is also in good agreement with the experimental result, in which the catalysts of Ni₄ supported on MgO with the fine crystallization and low surface area have relatively low reaction rate of CH_4 reforming [57,58].


It was reported that CH_x oxidation to CH_xO [59–63] is also very important for CH_4/CO_2 reforming, which might reduce the corresponding carbon deposition. Therefore, the typical CH species oxidation behaviors on Ni(111), P(Ni₄) and D(Ni₄) are also involved in the present work. The corresponding geometries of reactions, intermediates and products are shown in Fig. 1S in Supporting Materials. On D(Ni₄), the activation energy barrier of CH and O reaction is 0.64 eV, which is slightly lower than that on Ni(111)(0.80 eV) and much less than the value (1.17 eV) on P(Ni₄) [28]. This result indicates that CH species on D(Ni₄) is more prone to be oxidized to CHO and reduce the possible carbon deposition than on the perfect MgO support, which further support that Ni cluster on the defected MgO might be a good catalyst for $CH_4/$ CO_2 reforming than on the perfect one.

Therefore, an excellent catalyst for CH₄ reforming should have the lower energy barriers of the sequent dissociations of CH₄ \rightarrow -CH₂ + 2H, which means a high rate of CH₄ dissociation; furthermore, its barrier of the CH₂ further dissociation should match up with that of CH oxidation, which ensures that the CH species will be consumed instead of polymerizing to form the fused ring carbon deposition. This theoretical deduction points out the direction of the experimental efforts for the catalyst development of CH₄ reforming. Ni nano-particles supported on the defective MgO might be one of the good choices.

4.2. Effects of metal-support interactions on CH₄ reforming

According to the foregoing analysis, the adsorption energies of CH_3 , CH_2 , CH and C on $D(Ni_4)$ are generally relatively weaker than the corresponding ones on $P(Ni_4)$, which might be attributed to the

¹ For interpretation of color in Fig. 4, the reader is referred to the web version of this article.

Reaction coordinate

Fig. 4. Potential energy surfaces for CH₄ dissociation on the three catalysts (a) Ni(111), (b) perfect Ni₄/MgO and (c) defective Ni₄/MgO.

strong interactions between Ni₄ and MgO. As listed in Table 3, the interaction energies between Ni₄ and the perfect MgO vary from -3.03 to -3.67 eV; which are much less than those between Ni₄ and the defective MgO surface, $-5.04 \sim -5.34$ eV. It seems that the stronger the interaction between metal and support, the weaker is the adsorption for CH_x on Ni₄/MgO model catalysts. What is the electronic nature for this result? As seen in Table 2, the absolute charge values of Ni₄ on D(Ni₄) are higher than those on P(Ni₄), indicating that more electrons are transferred from support to Ni₄ clusters due to the stronger interaction between Ni₄ and the defective MgO surface. However, a few electrons are fed to the CH_x adspecies, leading to the relatively weak adsorption energies.

On the other hand, the strong interaction between Ni₄ and the defective MgO also leads to the decrease in energy barriers of the sequent dissociations of $CH_4 \rightarrow CH_2 + 2H$ and an appropriate barrier of CH oxidation (0.64 eV) which matches up with that of CH₂ further dissociation (0.75 eV). This provides a way to develop new catalysts with high activity and good resistance of carbon deposition, that is, reducing MgO support to produce more oxygen vacancies, or dispersing Ni nano-particles on MgO with high surface area and more possible defects. This deduction is supported by the experimental facts that the reduced Ni/MgO catalysts have a higher activity and more excellent anticoking performance than those that are unreduced [19–22]. Another novel technique is to provide electronic donors by using additive reagents into the Ni/MgO catalysts to increase the interactions between Ni nano-particles and MgO. For example, Su et al. [64] reported that the ZrO₂ promoted Ni/ MgO catalysts increase the electronic density of Ni, and further have relatively high activity and resistance of carbon deposition.

The calculated potential energy surfaces on $D(Ni_4)$ and $P(Ni_4)$ can be used to analyze the CH_4 dissociation from the perspectives of the reaction activation energies associated with the elementary reaction step. They are useful for design or development of cost-effective catalysts with desired activity and strong carbon-deposition resistance. According to the PES and the stronger interactions between Ni cluster and the defective MgO support than on $P(Ni_4)$ lead to the lower energy barriers of $CH_4 \rightarrow CH_2$ and more appropriate barrier for CH oxidation (0.64 eV), which is close to the CH_2 dissociation energy level (0.75 eV). The finding could lead a way for engineering the MgO supports with more oxygen vacancies and higher surface areas.

5. Conclusion

In the present work, the effects of the strong interactions between Ni_4 and MgO on the adsorptions of CH_x and H as well as the sequent dissociations of CH₄ on perfect and defective MgO supported Ni₄ are systematically investigated by DFT calculation. It is demonstrated that CH₄ weakly adsorbs on Ni₄/MgO catalysts, while strong chemical adsorption occurs for CH₃, CH₂, CH, C and H atom. The interaction between Ni₄ and the defective MgO is stronger than with the perfect one, and the corresponding adsorption energies of $CH_x(x = 0-3)$ and H are weaker than those on the perfect Ni₄/MgO. On the basis of Hirshfeld charge analysis, it is found that the stronger interactions between Ni₄ and MgO support lead to lower electronic feed from Ni₄ to CH_x adspecies, resulting in weaker adsorption. Compared with CH₄ reaction on Ni(111) and P(Ni₄), the energy barriers of the sequent dissociations of $CH_4 \rightarrow -$ CH₂ + 2H on D(Ni₄) are relatively lower, while the barrier of CH oxidation matches up with that of CH₂ dissociation, which might lead to high activity and low carbon deposition rate. The present theoretical work should shed light on catalyst development for high performance CH₄ reforming.

Acknowledgements

The work was supported by Wyoming Clean Coal Technology Fund in the U.S. and the National Natural Science Foundation of China (No. 21276171).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.fuel.2014.01.087.

References

- He L, Fan M, Dutcher B, Cui S, Shen X, Kong Y, et al. Dynamic separation of ultradilute CO₂ with a nanoporous amine-based sorbent. Chem Eng J 2012;189–190:13–23.
- [2] Cui S, Cheng W, Shen X, Fan M, Russell AG, Wu Z, et al. Mesorporous aminemodified SiO₂ aerogel: A potential CO₂ sorbent. Energ Environ Sci 2011;4:2070–4.
- [3] Dutcher B, Fan M, Leonard BM, Dyar DM, Tang J, Speicher EA, et al. Use of nanoporous FeOOH as a catalytic support for NaHCO₃ decomposition aimed at reduction of energy requirement of Na₂CO₃/NaHCO₃ Based CO₂ separation technology. J Phys Chem C 2011;115:15532–44.
- [4] Zhang B, Fan M, Bland A. CO₂ separation by a new solid K-Fe sorbent. Energ Fuel 2011;25:1919–25.
- [5] Efstathiou AM, Kladi A, Tsipouriari VA, Verykios XE. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts: II. A steady-state tracing analysis: mechanistic aspects of the carbon and oxygen reaction pathways to from CO. J Catal 1996;158:64–75.
- [6] Mark MF, Maier WF. CO₂-reforming of methane on supported Rh and Ir catalysts. J Catal 1996;164:122–30.
- [7] Erdohelyi A, Cserenyi J, Solymosi F. Activation of CH₄ and its reaction with CO₂ over supported Rh catalysts. J Catal 1993;141:287–99.

- [8] Liu H, Wang B, Fan M, Henson N, Zhang Y, Towler BF, et al. Study on carbon deposition associated with catalytic CH_4 reforming by using density functional theory. Fuel 2013;113:712–8.
- [9] Bradford MCJ, Vannice MA. CO₂ reforming of CH₄ over supported Pt catalyst. J Catal 1998;173:157–71.
- [10] Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM. Highly active and stable Ni/ZrO₂ catalyst for syngas production by CO₂ reforming of methane. Appl Catal A 2000;196:L167–72.
- [11] Hwang KS, Zhu HY, Lu GQ. New nickel catalysts supported on highly porous alumina intercalated laponite for methane reforming with CO₂. Catal Today 2001;68:183–90.
- [13] Yang ZX, Wu RQ, Zhang QM, Goodman DW. Adsorption of Au on an O-deficient MgO(001) surface. Phys Rev B 2002;65:155407/1-7/8.
- [14] Vitto AD, Pacchioni G, Delbecq F, Sautet P. Au atoms and dimers on the MgO(100) surface: a DFT of nucleation at defects. J Phys Chem B 2005;109:8040-8.
- [15] Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters $(1 \le n \le 30)$: One atom is enough! J Am Chem Soc 2000;122:3453–7.
- [16] Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, et al. When gold is not noble: nanoscale gold catalysts. J Phys Chem A 1999;103:9573–8.
- [17] Hu YH, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev 2002;44:423–53.
- [18] Hu YH, Ruckenstein E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO₂ reforming of CH₄. Catal Lett 1997;43:71–7.
- [19] Hu YH, Ruckenstein E. An optimum NiO content in the CO₂ reforming of CH₄ with NiO/MgO solid solution catalysts. Catal Lett 1996;36:145–9.
- [20] Ruckenstein E, Hu YH. The effect of precursor and preparation conditions of MgO on the CO₂ reforming of CH₄ over NiO/MgO catalysts. Appl Catal A 1997:154:185–205.
- [21] Ruckenstein E, Hu YH. Carbon dioxide reforming of methane over nickel/ alkaline earth metal oxide catalysts. Appl Catal A 1995;133:149–61.
- [22] Chen YG, Tomishige K, Yokoyama K, Fujimoto K. Catalytic performance and catalyst structure of nickel-magnesia catalysts for CO₂ reforming of methane. J Catal 1999;184:479–90.
- [23] Feng J, Ding Y, Guo Y, Li X, Li W. Calcination temperature effect on the adsorption and hydrogenated dissociation of CO₂ over the NiO/MgO catalyst. Fuel 2012;109:110–5.
- [24] Balakrishnan N, Joseph B, Bhethanabotla VR. Effect of Pt and Ru promoters on deactivation of Co catalysts by C deposition during Fischer–Tropsch synthesis: a DFT study. Appl Catal A 2013;462–463:107–15.
- [25] Liu H, Zhang R, Ding F, Yan R, Wang B, Xie K. A first-principles study of C + O reaction on NiCo(111) surface. Appl Surf Sci 2011;257:9455–60.
- [26] Zhang R, Liu H, Wang B, Ling L. Insight into the effect of surface hydroxyls on CO₂ hydrogenation over Pd/γ-Al₂O₃ catalyst: a computational study. Appl Catal B 2012;126:108–20.
- [27] Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1:37–46.
- [28] Wang SG, Liao XY, Hu J, Cao DB, Li YW, Wang J, et al. Kinetic aspect of CO₂ reforming of CH₄ on Ni(111): a density functional theory calculation. Surf Sci 2007;601:1271–84.
- [29] Burghgraef H, Jansen APJ, van Santen RA. Electronic structure calculations and dynamics of the chemisorption of methane on a Ni(111) surface. Chem Phys 1993;177:407–20.
- [30] Abild-Pedersen F, Lytken O, Engbæk J, Nielsen G, Chorkendorff I, Nørskov JK. Methane activation on Ni(111): Effects of poisons and step defects. Surf Sci 2005;590:127–37.
- [31] Moussounda PS, Haroun MF, M'passi-Mabiala B, Légaré P. A DFT investigation of methane molecular adsorption on Pt(100). Surf Sci 2005;594:231–9.
- [32] Bunnik BS, Kramer GJ. Energetics of methane dissociative adsorption on Rh(111) from DFT calculations. J Catal 2006;242:309–18.
- [33] Valero MC, Raybaud P, Sautet P. Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and C₂H₄ adsorption on Pd₄/γ-Al₂O₃. J Catal 2007;247:339–55.
 [34] Yang J, Lv CQ, Guo Y, Wang GC. A DFT+U study of acetylene selective
- [34] Yang J, Lv CQ, Guo Y, Wang GC. A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO₂ supported Pd₄ cluster. J Chem Phys 2012;136:104107/1-104107/15.
- [35] Teng BT, Wu FM, Huang WX, Wen XD, Zhao LH, Luo MF. A DFT study of the structures of Au_x clusters on a $CeO_2(111)$ surface. ChemPhysChem 2012;13:1261–71.
- [36] Teng BT, Lang JJ, Wen XD, Zhang C, Fan M, Harris HG. O₂ adsorption and oxidative activity on gold-based catalysts with and without a Ceria support. J Phys Chem C 2013;117(18986–18993):18993.

- [37] López N, Illas F. Ab initio modeling of the metal-support interface: the interaction of Ni, Pd, and Pt on MgO(100). J Phys Chem B 1998;102:1430–6.
- [38] Wang Y, Truong TN. Cluster formation model in vapor deposition of Pd atoms on the perfect MgO(100) surface and on its surface oxygen vacancy. J Phys Chem C 2008;112:13674–80.
- [39] Payne MC, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992;64:1045–97.
- [40] Milman V, Winkler B, White JA, Pickard CJ, Payne MC, Akhmatsakaya EV, et al. Electronic structure properties and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int J Quantum Chem 2000;77:895–910.
- [41] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.
- [42] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 1990;41:7892–5.
- [43] Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B 1976;13:5188–92.
- [44] Halgren TA, Lipscomb WN. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett 1977;49:225–32.
- [45] Pan Y, Liu C, Ge Q. Effect of surface hydroxyls on selective CO₂ hydrogenation over Ni₄/γ-Al₂O₃: A density functional theory study. J Catal 2010;272:227–34.
- [46] Carneiro JWM, Cruz MTM. Density functional theory study of the adsorption of formaldehyde on Pd₄ and on Pd₄/γ-Al₂O₃ clusters. J Phys Chem A 2008;112:8929-37.
- [47] Zhang R, Wang B, Liu H, Ling L. Effect of surface hydroxyls on CO₂ hydrogenation over Cu/γ-Al₂O₃ catalyst: A theoretical study. J Phys Chem C 2011;115:19811–8.
- [48] Alfonso DR, Snyder JA, Jaffe JE, Hess AC, Gutowski M. Opposite rumpling of the MgO and CaO(100) surfaces: a density-functional theory study. Phys Rev B 2000;62:8318–22.
- [49] Wang B, Yan R, Liu H. Effects of interactions between NiM (M = Mn, Fe, Co and Cu) bimetals with MgO(100) on the adsorption of CO₂. Appl Surf Sci 2012;258:8831–6.
- [50] Wang Y, Florez E, Mondragon F, Trong TN. Effects of metal-support interactions on the electronic structures of metal atoms adsorbed on the perfect and defective MgO(100) surface. Surf Sci 2006;600:1703–13.
- [51] Ferrari AM, Giordano L, Pacchioni G, Abbet S, Heiz U. Selectivity of surface defects for the activation of supported metal atoms: acetylene cyclotrimerization on Pd₁/MgO. J Phys Chem B 2002;106:3173–81.
- [52] Li J, Croiset E, Ricardez-Sandoval L. Effect of metal-support interface during CH₄ and H₂ dissociation on Ni/γ-Al₂O₃: A density functional theory study. J Phys Chem C 2013;117:16907-20.
- [53] Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surface. Surf Sci 1995;343:211–20.
- [54] Mavrikakis M, Hammer B, Nørskov JK. Effect of strain on the reactivity of metal surface. Phys Rev Lett 1998;81:2819–22.
- [55] Skoplyak O, Barteau MA, Chen JG. Reforming of oxygenates for H₂ production: Correlating reactivity of ethylene glycol and ethanol on Pt(111) and Ni/ Pt(111) with surface *d*-band center. J Phys Chem B 2006;110:1686–94.
- [56] Bradford MCJ, Vannice MA. Catalytic reforming of methane with carbon dioxide over Nickel catalysts I. Catalyst characterization and activity. Appl Catal A 1996;142:73–96.
- [57] Tomishige K, Yamazaki O, Chen Y, Yokoyama K, Li X, Fujimoto K. Development of ultra-stable Ni catalysts for CO₂ reforming of methane. Catal Today 1998;45:35–9.
- [58] Wang YH, Liu HM, Xu BQ. Durable Ni/MgO catalysts for CO₂ reforming of methane: activity and metal-support interaction. J Mol Catal A 2009;299:44–52.
- [59] Osaki T, Masuda H, Mori T. Intermediate hydrocarbon species for the CO₂-CH₄ reaction on supported Ni catalysts. Catal Lett 1994;29:33–7.
- [60] Bradford MCJ, Vannice MA. Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics. Appl Catal A 1996;142:97–122.
- [61] Wei J, Iglesia E. Isotopic and kinetic assessment of the mechanism of reactions of CH₄ with CO₂ or H₂O to form synthesis gas and carbon on nickel catalysts. J Catal 2004;224:370–83.
- [62] Wang S-G, Liao X-Y, Jia H, Cao D-B, Li Y-W, Wang J, et al. Kinetic aspect of CO_2 reforming of CH_4 on Ni(111): a density functional theory calculation. Surf Sci 2007;601:1271–84.
- [63] Rostrup-Nielsen JR, Hansen JHB. CO₂-reforming of methane over transition metals. J Catal 1993;144:38–49.
- [64] Chen JX, Qiu YJ, Zhang JY, Su WH. Influence of La₂O₃ and CeO₂ promoters on physico-chemical properties and catalytic performance of Ni/MgO catalyst in methane reforming with carbon dioxide. Acta Phys Chim Sin 2004;20:76–80.