Contents lists available at ScienceDirect

Molecular Catalysis

journal homepage: www.journals.elsevier.com/molecular-catalysis

Theoretical studies about C_2H_2 semi-hydrogenation on the carbon material supported metal cluster catalysts: Influences of support type and cluster size on the catalytic performance

Yamin Qi ^{a,b}, Xiuxiu Shao ^{a,b}, Baojun Wang ^{a,b}, Lixia Ling ^{a,b}, Riguang Zhang ^{a,b,*}

^a State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
^b Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education, PR China

A	R	Т	I	С	L	Е	ΙN	F	0		

Keywords: C₂H₂ semi-hydrogenation Carbon material supports Cluster sizes Electronic properties analysis

ABSTRACT

The support type and cluster size of the supported catalysts strongly affect their catalytic performance toward the targeted reaction. This study is designed to investigate the influences of support type and cluster size on C_2H_4 selectivity and activity of C_2H_2 semi-hydrogenation; density functional theory calculations were utilized to illustrate C_2H_2 semi-hydrogenation mechanism on the catalysts with the different carbon material supported different sizes of metal clusters. The results show that for the different carbon material supported single-atom Cu or Pd catalysts, the support types greatly affect C_2H_4 selectivity and activity, among them, GDY support shows excellent catalytic performance. On the other side, as to the M_n/GDY (M=Cu, Pd) catalysts with different cluster sizes, the activity of Pd_n/GDY is generally better than that of Cu_n/GDY; while the selectivity of Cu_n/GDY is better than that of Pd_n/GDY. Interestingly, Pd_1/GDY presents excellent C₂H₄ selectivity and activity for C₂H₂ semi-hydrogenation, attributing to its moderate Mulliken charge of metal atoms. This study could provide valuable structure clue for the obtaining of highly-efficient supported catalysts with suitable carbon material support and cluster size.

1. Introduction

Acetylene (C_2H_2) semi-hydrogenation to ethylene (C_2H_4) has been widely applied to purify C_2H_4 stream in the industry [1-3]. Pd catalysts are industrially used for C_2H_2 semi-hydrogenation due to its high activity, while it exhibits low C_2H_4 selectivity [4, 5]. Further, Pd alloyed the second metal Cu [6], Ag [7], or Au [8] are used to improve C_2H_4 selectivity, while the high cost of Pd limits its widespread use.

Nowadays, great attention has been attracted about the single-atom catalysts (SACs) in terms of heterogeneous catalysis field due to its unusual catalytic properties, maximized atom utilization, unique electronic and geometric structures [9-11]. Importantly, the strong metal-support interaction plays a vital role in providing an ideal platform for anchoring active center and optimizing the electronic and geometric structures of metal atoms [12, 13]. Thus, choosing appropriate support material is of great significance. In recent years, the high specific surface area and the unique physical and chemical properties make carbon material as the support well improve the catalytic performance. For instance, the experiment found that Pd₁/N-graphene

exhibited 99% C_2H_2 conversion and 93.5% C_2H_4 selectivity [14]. Experimental studies by Huang *et al.* [15] showed that $Cu_1/ND@G$ (G=grephene) catalyst achieved 95% C_2H_2 conversion, 98% C_2H_4 selectivity and more than 60 h stability; meanwhile, DFT studies indicated that C_2H_4 desorption priority resulted in high C_2H_4 selectivity on $Cu_1/ND@G$. The experimental and theoretical studies demonstrated that Co_1/G showed excellent activity and selectivity for azoxy aromatic compounds in nitroarenes hydrogenation [16]. Pd_1 /graphene exhibited high selectivity toward 1-butene in 1,3-butadiene hydrogenation [17]. Pd_1 /graphene catalyst has nearly 100% butene selectivity and 95% 1, 3-butadiene conversion in 1,3-butadiene hydrogenation [18]. Above results showed that the graphene supported single-atom catalysts unveil better catalytic performance for selective hydrogenation reaction.

Extensive work has revealed that the defects on graphene affect the physical and chemical properties of graphene [19-22]. Graphene with single- and double-defects shows outstanding ability to anchor single-atom Fe [23]. Besides the defects on graphene, the moderate additive into carbon material is also a practical method to advance the catalytic performance. Both experimental and theoretical studies

https://doi.org/10.1016/j.mcat.2021.111840

Received 16 May 2021; Received in revised form 4 August 2021; Accepted 17 August 2021 Available online 29 August 2021 2468-8231/© 2021 Elsevier B.V. All rights reserved.

^{*} Corresponding author. *E-mail address:* zhangriguang@tyut.edu.cn (R. Zhang).

demonstrated that the B-doped and N-doped graphene had better catalytic performance, for example, the experiments elucidated that B-doped graphene is a valid electrocatalyst for hydrogenation evolution reaction [24]. Interestingly, the theoretical studies revealed that B-doped graphene was reactive enough to chemically bind NO₂ and NO [25]. Pt₁/N-C exhibits superior performance for the hydrogenation among twenty-four SACs [26]. The Cu-N₃ site of Cu-SA/HCNS experimentally shows an 86% benzene conversion and 96.7% phenol selectivity in benzene selective oxidation to phenol [27].

Further, nitrogenized holey doped graphene (g-C₂N and g-C₃N₄) have been synthesized and attracted a lot of attention. Fe1Cu1@C2N processes better CO oxidation activity [28]. C2N-Co2+ facilitated HCOOH dehydrogenation via decreasing the rate-determining barrier [29]. The calculations showed that $M_1/g-C_3N_4$ was highly selective for propane dehydrogenation, especially the single-atom V, Cr, Mn anchored on g-C₃N₄ [30]. Pd₁/C₃N₄ single-atom catalyst has better C₂H₄ selectivity and coking resistance for C₂H₂ hydrogenation [31]. $Pd_1/g-C_3N_4$ exhibits high selectivity but low activity energy in C_2H_2 semi-hydrogenation, which also agrees with the experiments [32]. Interestingly, graphdivne (GDY), as a new type of carbon material, shows good prospects for industrial applications, for example, Lu et al. [33] investigated a series of M/GDY catalysts, Rh and Ir with low concentrations (about 1.37 at%) have the potential to be applied as single metal catalysts. DFT studies found that M_xM'_{3-x}/GDY (M, M'=Ru, Os) catalysts have high C₂H₄ selectivity in C₂H₂ semi-hydrogenation [34]. Meanwhile, both C₂H₄ selectivity and activity greatly depend on the composition and size of Pd_xM_v/GDY (M=Cu, Ag, Au, Ni; x+y=1-3) catalysts [35].

On the other side, in the supported metal cluster catalyst, the sizes of metal cluster affect the reactive performance. DFT calculations showed that Fe2 clusters exhibited superior activity for acidic oxygen reduction reaction among $Fe_x(x=1-3)$ clusters on N-doped grapheme [36]. Among $Au_x(x=3, 4, 5, 6, 7, 13, 38)$ clusters, small planar clusters are more active for a series of Lewis acid and oxidation reactions [37]. The Gibbs free energy of HCOOH dehydrogenation on Ni_x@C₂N(x=1-3) predicted that Ni₂@C₂N exhibits excellent catalytic activity [38]. Kuo et al. [39] showed that Pt nanoparticles in the subnanometer size regime exhibits remarkably high selectivity to C₂H₄ compared to the low selectivity on the large Pt nanoparticles. The theoretical studies by Ma et al. [40] studied C₂H₂ semi-hydrogenation over the oxygen-defected anatase TiO₂(110) (Ana-Ov) supported Pt cluster (n=1, 2, 4, 8) catalysts, indicating that the adsorption strength of C₂H₂ and C₂H₄ increases with the increasing of Pt cluster size, implying the higher catalytic activity is possible. Shi et al. [41] elucidated that the decreasing of Cu particle size reduces the activity considerably, however, both C2H4 selectivity and durability in C₂H₂ semi-hydrogenation were gradually improved; Cu SAC exhibited the highest C2H4 selectivity of 91% at the complete conversion along with excellent long-term stability for at least 40 h, whereas the rapid deactivation occurred on Cu nanoparticle catalysts.

Reports in the above literatures, however, vary widely, and the catalytic performance of various carbon material supported metal single-atom or clusters for C_2H_2 semi-hydrogenation remains elusive. Several carbon materials, such as single-defect graphene, double-defect graphene, B-doped graphene, N-doped graphene, g- C_2N , g- C_3N_4 and GDY, supported single-atom and metal cluster catalysts to exhibit better catalytic performance in selective hydrogenation reactions. However, for C_2H_2 semi-hydrogenation, the influence of carbon material type on the catalytic performance is still unclear. Meanwhile, when carbon material is the same, the influence of supported metal cluster sizes on the catalytic performance is also unknown. Thus, it is necessary to clarify what type of the support and what size of the cluster may be the most suitable for C_2H_2 semi-hydrogenation.

This study is designed to identify the influences of support type and cluster size on the catalytic performance of the carbon material supported metal cluster catalysts for C_2H_2 semi-hydrogenation, DFT calculation method is used to systematically study the activity and

selectivity of C_2H_2 semi-hydrogenation on different types of carbon material supported metal cluster with different sizes. Carbon materials mainly focus on single-defect graphene, double-defect graphene, Bdoped graphene, N-doped graphene, g- C_2N , g- C_3N_4 and GDY; metal clusters mainly consider different sizes of Cu and Pd clusters. The results are expected to obtain the most suitable carbon support type and cluster size for C_2H_2 semi-hydrogenation, which can provide a reference structure clues for screening and designing catalysts with excellent catalytic performance in C_2H_2 semi-hydrogenation.

2. Computational details

2.1. Computational method

The Dmol³ code was used to carry out DFT calculations [42, 43]. The exchange-correlation was illustrated by generalized gradient approximation (GGA) realized by Predew-Burke-Ernzerhof (PBE) functional [44]. Considering the dispersion effect, DFT-D corrections was employed to describe the van der walls interaction [45-47]. A $3 \times 3 \times 1$ *k*-point was set in the structure optimization and other relevant computations. The double numerical basis set plus polarization function (DNP) was utilized to treat the valence electron wave function [48]. The complete LST/QST method was used to search the transition state [49], TS Confirmation and frequency analysis methods were used to confirm the transition state.

2.2. Computational models

In order to illustrate the influence of support type in the carbon material supported metal catalysts, the single-defect graphene, double-defect graphene, B-doped graphene, N₁-doped graphene, N₂-doped graphene, N₃-doped graphene, g-C₂N, g-C₃N₄ and GDY are considered to support single-atom M (M=Cu or Pd), there are eighteen kinds of catalysts, donated as M₁/SVG, M₁/DVG, M₁/BVG, M₁/NVG, M₁/N₂VG, M₁/N₃VG, M₁/C₃N₄, M₁/GDY.

On the other hand, aiming at identifying the influence of cluster size in the carbon material supported metal cluster catalysts, GDY is considered to support different sizes of metal M (M=Cu or Pd) cluster catalysts, there are fourteen kinds of catalysts, donated as M_2 /GDY, M_3 / GDY, M_4 /GDY, M_7 /GDY, M_{13} /GDY, M_{38} /GDY, M_{55} /GDY. All optimized catalyst structures are shown in Fig. 1.

2.3. The stability of various carbon material supported metal cluster catalysts

The stability of all catalysts is evaluated by the calculation of the binding energy between the metal clusters and carbon material supports. The binding energy ($E_{\rm b}$) is defined as follows:

$$E_b = E_{cluster/support} - E_{support} - E_{cluster}$$
⁽¹⁾

Where $E_{\text{cluster/support}}$, E_{support} and E_{cluster} stand for the total energy of the M_{cluster}/support system, the support and the metal cluster, respectively. The more negative the binding energy is, the more stable the catalyst is. As listed in Table 1, the binding energy is below -300 kJ•mol⁻¹, indicating that the carbon material supported metal cluster catalysts is extremely stable.

2.4. Free energy calculation

All the adsorption and reaction energies involved in this study were calculated at a finite temperature to consider the entropy and thermal contribution.

The adsorption free energy (G_{ads}) is calculated by the Eq. (2):

$$G_{ads} = E_{surface} + G_{surface} + E_{adsorbate} + G_{adsorbate} - E_{system} - G_{system}$$
(2)

Fig. 1. The structures of different carbon material supported M_n (M=Cu, Pd, n=1, 2, 3, 4, 7, 13, 38, 55) catalysts. (a) The supported single-atom M (M=Cu, Pd) catalysts; (b) The supported cluster M_n (M=Cu, Pd, n=2, 3, 4, 7, 13, 38, 55) catalysts.

Table 1
The binding energy $(E_b/kJ \bullet mol^{-1})$ between the carbon material and the sup-
ported M _n (M=Cu, Pd, n=1, 2, 3, 4, 7, 13, 38, 55) cluster.

Catalysts	$E_{\rm b}/{\rm kJ}{ullet}{ m mol}^{-1}$	Catalysts	$E_{\rm b}/{\rm kJ}{ullet mol^{-1}}$
Cu ₁ /SVG	-568.8	Pd ₁ /SVG	-747.3
Cu ₁ /BVG	-389.0	Pd ₁ /BVG	-543.4
Cu ₁ /DVG	-713.4	Pd ₁ /DVG	-685.4
Cu ₁ /NVG	-491.0	Pd ₁ /NVG	-565.7
Cu ₁ /N ₂ VG	-523.4	Pd ₁ /N ₂ VG	-560.1
Cu ₁ /N ₃ VG	-490.2	Pd ₁ /N ₃ VG	-438.3
Cu_1/C_2N	-523.3	Pd ₁ /C ₂ N	-510.4
Cu ₁ /C ₃ N ₄	-379.9	Pd ₁ /C ₃ N ₄	-330.9
Cu ₁ /GDY	-434.9	Pd ₁ /GDY	-481.2
Cu ₂ /GDY	-441.3	Pd ₂ /GDY	-608.9
Cu ₃ /GDY	-652.1	Pd ₃ /GDY	-636.1
Cu ₄ /GDY	-696.0	Pd ₄ /GDY	-653.0
Cu7/GDY	-555.9	Pd7/GDY	-759.6
Cu ₁₃ /GDY	-776.2	Pd ₁₃ /GDY	-924.1
Cu ₃₈ /GDY	-1253.2	Pd ₃₈ /GDY	-1742.9
Cu ₅₅ /GDY	-1480.9	Pd ₅₅ /GDY	-2244.7

Where $E_{surface}$ is the total energy of the clean catalyst surface, E_{ad} . sorbate is the total energy of the gas-phase adsorbate, and E_{system} is the total energy of adsorbate-substrate system in its equilibrium state; $G_{surface}$, $G_{adsorbate}$ and G_{system} are the corresponding free energies corrections at a finite temperature. Based on the above definition, the more negative the value of G_{ads} is, and the stronger the adsorption ability of the adsorbed species on the surface is.

Activation free energy (G_a) and reaction free energy (ΔG) are calculated on the basis of the Eqs. (3) and (4) at a finite temperature.

$$G_a = E_{TS} + G_{TS} - E_{IS} - G_{IS}$$
(3)

$$\Delta G = E_{FS} + G_{FS} - E_{IS} - G_{IS} \tag{4}$$

Where $E_{\rm IS}$, $E_{\rm TS}$ and $E_{\rm FS}$ stand for the total energies of initial state (IS), transition state (TS) and final state (FS), respectively; $G_{\rm IS}$, $G_{\rm TS}$ and $G_{\rm FS}$ correspond to the corrections of the free energies at a finite temperature. The DMol³ output document of frequency analysis can directly obtain the values of $G_{\rm IS}$, $G_{\rm TS}$ and $G_{\rm FS}$.

3. Results and discussion

3.1. Paths of C_2H_2 semi-hydrogenation

As illustrated in Fig. 2, C_2H_2 hydrogenation not only generates gaseous C_2H_4 , but also forms ethane due to C_2H_4 over-hydrogenation. Thus, three paths exist: $C_2H_2+H\rightarrow C_2H_3+H\rightarrow C_2H_4$ (C_2H_4 desorption path), $C_2H_2+H\rightarrow C_2H_3+H\rightarrow C_2H_4+2H\rightarrow C_2H_6$ (C_2H_4 intermediate path)

$$\begin{array}{c} \textcircled{1} C_2H_2(ads) \xrightarrow{+H} C_2H_3(ads) \xrightarrow{+H} C_2H_4(ads) \xrightarrow{desorption} C_2H_4(g) \\ \hline \textcircled{2} C_2H_2(ads) \xrightarrow{+H} C_2H_3(ads) \xrightarrow{+H} C_2H_4(ads) \xrightarrow{+H} C_2H_5(ads) \\ \hline \textcircled{3} C_2H_2(ads) \xrightarrow{+H} C_2H_3(ads) \xrightarrow{+H} C_2H_3(ads) \xrightarrow{+H} C_2H_5(ads) \\ \hline \end{array}$$

Fig. 2. Possible reactions of C_2H_2 semi-hydrogenation. (ads) and (g) stand for the adsorbed and gaseous states, respectively.

and $C_2H_2+H \rightarrow C_2H_3+H \rightarrow CHCH_3+2H \rightarrow C_2H_6$ (CHCH_3 intermediate path).

C₂H₂ selective hydrogenation on the Cu-based catalysts occurs at the temperature of 423~523 K [50, 51] and Pd-based catalysts usually occurs at the temperature of 300~500 K under the experimental conditions [52, 53]. On the other hand, "green oil" is generated by the polymerization process, which makes the catalysts deactivation [54, 55], and previous studies found that the accumulation of green oil results in the decreasing of hydrogenation activity at low temperature [56, 57]. Meanwhile, the higher H_2/C_2H_2 ratio of 10: 1 is beneficial to suppress the formation of green oil and inhibit the irreversible deactivation of the catalyst [58, 59]. Thus, the high temperature and H₂/C₂H₂ ratio are beneficial to prevent green oil formation. H2/C2H2 ratio of 10:1 and the temperature 425 K are chosen and the "green oil" formation is not considered in this work. Since C2H2 content in the raw C2H4 is only 0.1 to 1%, C₂H₄ content is high as 89%, and the experimental pressure is the standard pressure [5, 60-61], correspondingly, 0.01, 0.1 and 0.89 atm are the partial pressures of C₂H₂, H₂ and C₂H₄, respectively.

3.2. C_2H_2 and C_2H_4 adsorption

The produced C_2H_4 contains $0.1 \sim 1\%$ of C_2H_2 in the steam-cracking process, removing trace C_2H_2 in the raw C_2H_4 can be achieved when C_2H_2 adsorption is stronger than C_2H_4 [62]. Fig. S1 and Table 2 present the most stable configurations of C_2H_2 and C_2H_4 on the carbon material supported metal M (M=Cu, Pd) catalysts and its corresponding adsorption free energies at 425 K.

For eighteen kinds of carbon material supported single-atom M catalysts, see Table 2, both C₂H₂ and C₂H₄ are weakly adsorbed (19.9 and 32.2 kJ•mol⁻¹) on Cu₁-DVG; C₂H₂ adsorption is weaker than C₂H₄ adsorption (-34.8 and -36.1 kJ•mol⁻¹) on Pd₁-C₂N. However, on other sixteen kinds of the catalysts, Cu₁/SVG, Cu₁/BVG, Cu₁/NVG, Cu₁/N₂VG, Cu₁/N₃VG, Cu₁/C₂N, Cu₁/C₃N₄, Cu₁/GDY, Pd₁/SVG, Pd₁/BVG, Pd₁/DVG, Pd₁/NVG, Pd₁/N₂VG, Pd₁/N₃VG, Pd₁/N₂VG, Cu₁/C₃N₄ adsorption, trace C₂H₂ can be adsorbed on the catalysts for C₂H₂ subsequent hydrogenation.

For fourteen kinds of GDY supported metal M cluster catalysts, see Table 2, C_2H_2 adsorption is still stronger than C_2H_4 adsorption, namely, trace C_2H_2 can be adsorbed on the catalysts for C_2H_2 subsequent hydrogenation.

Table 2

The adsorption free energies ($G_{ads}/kJ \bullet mol^{-1}$) of C_2H_2 and C_2H_4 species on the different carbon material supported M_n (M=Cu, Pd, n=1, 2, 3, 4, 7, 13, 38, 55) catalysts.

Catalysts	Gads		Catalysts	$G_{\rm ads}$	
	C_2H_2	C_2H_4		C_2H_2	C_2H_4
Cu ₁ /SVG	-98.0	-79.3	Pd ₁ /SVG	-44.6	-39.1
Cu ₁ /BVG	-99.8	-89.7	Pd ₁ -BVG	-51.6	-48.8
Cu ₁ /DVG	19.9	32.2	Pd ₁ -DVG	-84.3	-42.4
Cu ₁ /NVG	-95.2	-77.1	Pd ₁ -NVG	-95.6	-78.8
Cu1/N2VG	-103.2	-93.7	Pd ₁ -N ₂ VG	-145.2	-123.2
Cu ₁ /N ₃ VG	-144.0	-132.9	Pd ₁ -N ₃ VG	-143.4	-122.5
Cu ₁ /C ₂ N	-75.9	-69.1	Pd ₁ /C ₂ N	-34.8	-36.1
Cu ₁ /C ₃ N ₄	-76.3	-35.9	Pd ₁ /C ₃ N ₄	-104.0	-83.2
Cu ₁ /GDY	-96.1	-69.6	Pd_1/GDY	-63.4	-53.9
Cu ₂ /GDY	-134.3	-66.9	Pd ₂ /GDY	-117.5	-108.1
Cu ₃ /GDY	-27.5	-17.6	Pd ₃ /GDY	-205.2	-153.1
Cu ₄ /GDY	-75.5	-80.2	Pd ₄ /GDY	-177.8	-116.7
Cu7/GDY	-225.9	-98.8	Pd ₇ /GDY	-185.5	-80.7
Cu13/GDY	-171.7	-74.6	Pd ₁₃ /GDY	-204.0	-99.4
Cu ₃₈ /GDY	-125.4	-49.1	Pd ₃₈ /GDY	-272.3	-94.9
Cu ₅₅ /GDY	-125.2	-37.8	Pd ₅₅ /GDY	-246.0	-153.2

3.3. C_2H_2 hydrogenation on the supported M (M=Cu, Pd) single-atom catalysts

3.3.1. C_2H_4 desorption and its hydrogenation

As depicted in Fig 3 and Table S1, among above sixteen kinds of supported M single-atom catalysts, the reaction of $C_2H_4+H\rightarrow C_2H_5$ is more favorable than C₂H₄ desorption in kinetics on five kinds of Cu₁/ BVG (85.9 vs. 89.7 kJ•mol⁻¹), Cu₁/N₃VG (61.2 vs. 132.9 kJ•mol⁻¹), Pd₁/NVG (56.0 vs. 78.8 kJ•mol⁻¹), Pd₁/N₂VG (90.5 vs. 123.2 kJ•mol⁻¹) and Pd₁/N₃VG catalysts (95.7 vs. 122.5 kJ•mol⁻¹), namely, the adsorbed C₂H₄ is difficult to desorb from the catalyst and subjected to overhydrogenation to ethane. However, C2H4 desorption is more kinetically superior to its hydrogenation $C_2H_4+H\rightarrow C_2H_5$ on eleven kinds of Cu₁/SVG (80.6 vs. 79.3 kJ•mol⁻¹), Cu₁/NVG (120.1 vs. 77.1 kJ•mol⁻¹), Cu₁/N₂VG (100.6 vs. 93.7 kJ•mol⁻¹), Cu₁/C₂N (241.6 vs. 69.1 kJ•mol⁻¹), Cu₁/C₃N₄ (193.8 vs. 35.9 kJ•mol⁻¹), Cu₁/GDY (81.9 vs. 69.6 kJ•mol⁻¹), Pd₁/SVG (69.0 vs. 39.1 kJ•mol⁻¹), Pd₁/BVG (139.8 vs. 48.8 kJ•mol⁻¹), Pd₁/DVG (68.8 vs. 42.4 kJ•mol⁻¹), Pd₁/C₃N₄ (99.9 vs. 83.2 kJ \bullet mol⁻¹) and Pd₁/GDY (330.9 vs. 53.9 kJ \bullet mol⁻¹), namely, the adsorbed C₂H₄ is easy to desorb from these eleven catalysts to generate gaseous C₂H₄.

3.3.2. C₂H₂ semi-hydrogenation

As mentioned above, eleven kinds of supported single-atom M catalysts are screened out to favor C_2H_4 desorption to gaseous C_2H_4 , thus, C_2H_2 hydrogenation is further examined on the Cu₁/SVG, Cu₁/NVG, Cu₁/N₂VG, Cu₁/C₂N, Cu₁/C₃N₄, Cu₁/GDY, Pd₁/SVG, Pd₁/BVG, Pd₁/ DVG, Pd₁/C₃N₄ and Pd₁/GDY.

As to the supported single-atom Cu catalysts, on Cu₁/GDY, as shown in Fig. 4 and Table S2, the first step $C_2H_2+H\rightarrow C_2H_3$ has an activation free energy of 34.0 kJ•mol⁻¹ and reaction free energy of 123.5 kJ•mol⁻¹. Beginning with C_2H_3 intermediate, C_2H_4 formation is more kinetically favorable than CHCH₃ formation (90.9 vs. 105.0 kJ•mol⁻¹), namely, C_2H_2 hydrogenation can easily generate C_2H_4 intermediate, followed by its desorption to gaseous C_2H_4 . Thus, Cu₁/GDY is more favorable to generate gaseous C_2H_4 . Similar conditions appear on the Cu₁/C₂N (Fig. S3) and Cu₁/C₃N₄ (Fig. S4).

Interestingly, on Cu₁/SVG (see Fig. S5), the first step $C_2H_2+H\rightarrow C_2H_3$ has an activation free energy of 123.7 kJ•mol⁻¹ and reaction free energy of 167.6 kJ•mol⁻¹, beginning with C_2H_3 intermediate, CHCH₃ formation is more kinetically favorable than C_2H_4 formation (93.2 vs. 260.4 kJ•mol⁻¹), C₂H₂ is easily hydrogenated to generate CHCH₃ intermediate, followed by hydrogenation to ethane. Thus, Cu₁/SVG catalyst is not conducive to gaseous C₂H₄ generation. Similarly, such condition also occurs on the Cu₁/NVG (Fig. S6), Cu₁/N₂VG (Fig. S7).

As to the supported single-atom Pd catalysts, on the Pd₁/GDY (Fig. 5), Pd₁/BVG (Fig. S8) and Pd₁/C₃N₄ (Fig. S9), gaseous C₂H₄ generation is the most favored. However, on the Pd₁/SVG (Fig. S10) and Pd₁/DVG (Fig. S11), CHCH₃ formation is more favorable than C₂H₄ formation in kinetics, these two catalysts are conducive to ethane generation. Wang *et al.* [35] also demonstrated that Pd₁/GDY is in favor of C₂H₂ semi-hydrogenation to produce gaseous C₂H₄.

3.3.3. Influences of support types on the selectivity and activity of C_2H_4 formation

When C_2H_4 desorption path is more superior than other two hydrogenation paths in kinetics, the energy difference between C_2H_4 hydrogenation activation free energy ($G_{a,hydr}$) and C_2H_4 desorption free energy ($G_{a,des}$) is employed as a descriptor to qualitatively and quantitatively evaluate C_2H_4 selectivity, which is defined as follows:

$$S_{sel} = G_{a,hvdr} - G_{a,des} \tag{5}$$

When CHCH₃ intermediate path is kinetically favorable than C₂H₄ desorption path, the difference of the overall activation free energy between the reactions C₂H₃+2H→C₂H₅ ($G_{hydr,CHCH3}$) and C₂H₃+H→C₂H₄ ($G_{hydr,C2H4}$) is used as a descriptor to evaluate C₂H₄

Fig. 3. C₂H₄ desorption free energy and its hydrogenation activation free energy on the different carbon material supported Cu and Pd single-atom catalysts.

selectivity, which is defined as follows:

$$S_{sel} = G_{hydr,CHCH3} - G_{hydr,C2H4} \tag{6}$$

When S_{sel} is positive, the catalyst shows good C_2H_4 selectivity, whereas it shows poor C_2H_4 selectivity. Meanwhile, two-step model is used to calculate C_2H_4 formation rate for evaluating catalytic activity (see details in the Supplementary Material).

 C_2H_4 formation activity (*r*/molecules•s⁻¹•site⁻¹) is calculated using the Eq. (7):

$$r = \frac{k_B T}{h} = \frac{\left(1 - \frac{P_p}{P_R} e^{\frac{\Delta G}{R}}\right)}{\frac{P_p}{P_R} e^{\frac{G d - G d + G d + G d + F}{RT}} + e^{\frac{G d - F}{RT}}}$$
(7)

Where *T*, *P*_R and *P*_P are the reaction temperature, the reactant partial pressure and the product partial pressure, respectively. According to the experimental conditions, *P*_R and *P*_P are set to be 0.11 and 0.89 atm, respectively; *P*⁰ is the standard pressure, *k*_B and *h* are the Boltzmann constant and the Planck constant, respectively. ΔG is the overall reaction free energy of C₂H₂ semi-hydrogenation to C₂H₄, the obtained value from DFT calculations is -206.3 kJ•mol⁻¹ at 425 K. *G*^{ad}_R, *G*^{de}_R and *G*^{de}_P can be obtained by the potential energy map of C₂H₂ semi-hydrogenation to C₂H₄

For carbon material supported single-atom Cu catalysts, as listed in Table 3, C₂H₄ selectivity on the Cu₁/C₂N, Cu₁/C₃N₄, Cu₁/GDY are 172.5, 157.9 and 12.3 kJ•mol⁻¹, C₂H₄ formation rates are 1.35×10^{-6} , 1.08×10^{-9} and 8.67×10^{3} molecules•s⁻¹•site⁻¹, respectively. However, C₂H₄ selectivity on the Cu₁/SVG, Cu₁/NVG, Cu₁/N₂VG are -167.2, -179.9 and -256.9 kJ•mol⁻¹, C₂H₄ formation rates are 5.54×10^{-3} , 7.67 $\times 10^{-4}$ and 3.77×10^{-32} molecules•s⁻¹•site⁻¹, respectively. C₂H₄ selectivity is in sequence of Cu₁/C₂N>Cu₁/C₃N₄>Cu₁/GDY>Cu₁/SVG>Cu₁/NVG>Cu₁/NVG>Cu₁/GDY>Cu₁/NVG>Cu₁/GDY>Cu₁/SVG>Cu₁/NVG>Cu₁/C₃N₄>Cu₁/GDY>Cu₁/N₂VG. Thus, the Cu₁/C₂N, Cu₁/C₃N₄ and Cu₁/GDY favor C₂H₄ desorption path to generate gaseous C₂H₄, Cu₁/GDY shows poor C₂H₄ selectivity, but the best activity; whereas the Cu₁/C₂N and Cu₁/C₃N₄ exhibit poor activity of C₂H₄ formation, but the best C₂H₄ selectivity.

For carbon material supported single-atom Pd catalysts, C₂H₄ selectivity on the Pd₁/BVG, Pd₁/C₃N₄, Pd₁/GDY are 91.0, 16.7 and 277.0 kJ•mol⁻¹, C₂H₄ formation rates are 2.23 × 10⁰, 1.66 × 10⁴ and 2.78 × 10⁹ molecules•s⁻¹•site⁻¹, respectively. However, C₂H₄ selectivity on the Pd₁/SVG and Pd₁/DVG are -89.2 and -153.9 kJ•mol⁻¹, C₂H₄ formation rates are 7.02 × 10⁷ and 7.35 × 10⁻³ molecules•s⁻¹•site⁻¹, respectively. Is in sequence of Pd₁/GDY>Pd₁/BVG>Pd₁/C₃N₄>Pd₁/SVG>Pd₁/DVG, and the activity order

of C₂H₄ formation is Pd₁/GDY>Pd₁/SVG>Pd₁/C₃N₄>Pd₁/BVG> Pd₁/DVG. Thus, Pd₁/BVG, Pd₁/C₃N₄ and Pd₁/GDY catalysts are in favor of C₂H₄ desorption path to generate gaseous C₂H₄, Pd₁/GDY shows better gaseous C₂H₄ selectivity and activity than Pd₁/C₃N₄ and Pd₁/BVG.

Thus, six kinds of Cu₁/GDY, Cu₁/C₂N, Cu₁/C₃N₄, Pd₁/GDY, Pd₁/C₃N₄ and Pd₁/BVG are favorable to produce gaseous C₂H₄ with better catalytic performance.

3.3.4. Electronic properties of the supported single-atom Cu and Pd catalysts

Mulliken charge of metal atom on above six kinds of Cu₁/GDY, Cu₁/ C₂N, Cu₁/C₃N₄, Pd₁/GDY, Pd₁/C₃N₄ and Pd₁/BVG catalysts is 0.015, 0.376, 0.423, 0.198, 0.131 and 0.222 e, respectively, suggesting that the electron transfer occurs from the metal atom to the support. As shown in Fig. 6, the relationship of Mulliken charge with C₂H₄ formation activity (lgr) shows a quasi-volcanic curve. Cu₁/GDY (0.015 e) and Pd₁/C₃N₄ (0.131 e) with less charge show poor activity of C₂H₄ formation (3.938) and 4.221 molecules•s⁻¹•site⁻¹); Pd₁/BVG (0.222 *e*) with more charge also exhibits the worst activity of C2H4 formation (0.349 molecule $s \circ s^{-1} \circ site^{-1}$; Cu₁/C₂N and Cu₁/C₃N₄ catalysts with the most charge exhibits the worst activity of C2H4 formation (-5.870 and -8.967 molecules• s^{-1} •site⁻¹). However, Pd₁/GDY with moderate charge (0.198 *e*) exhibits the best activity of C2H4 formation (9.444 molecules•s⁻¹•site⁻¹). Similarly, for Pd₁/GDY catalyst, it also exhibits the best C_2H_4 selectivity (277.0 kJ•mol⁻¹) with the moderate charge of metal atom. Based on above analysis, the different support results in different electron transfer between the metal atom and the support, which alters the electronic properties of metal active center, and then affects the adsorption stability of reaction intermediates to exhibit an extremely different catalytic performance.

3.4. C₂H₂ semi-hydrogenation on the M_n/GDY (M=Cu, Pd; n=2, 3, 4, 7, 13, 38, 55)

Above results show that Pd_1/GDY exhibits excellent catalytic performance for C_2H_2 semi-hydrogenation. Meanwhile, Cu_1/GDY exhibits poor C_2H_4 selectivity and better C_2H_4 formation activity. Thus, the influence of cluster size on the catalytic performance of C_2H_2 semihydrogenation was further explored on fourteen kinds of the supported M_n/GDY (M=Cu, Pd; n=2, 3, 4, 7, 13, 38, 55) catalysts. C_2H_2 and C_2H_4 adsorption free energy and the stable configurations are shown in Table 2 and Fig. S1.

3.4.1. C_2H_2 semi-hydrogenation

For the supported Cu_n/GDY (n=2, 3, 4, 7, 13, 38, 55) catalysts, on

Fig. 4. Free energy profiles of C_2H_2 semi-hydrogenation with the initial states, transition states and final states on Cu_1/GDY catalyst.

Cu₂/GDY, Cu₃/GDY, Cu₇/GDY, Cu₃₈/GDY and Cu₅₅/GDY, see Figs. S13~S17, C₂H₄ desorption path exhibits more priority than other two paths, C₂H₄ selectivity is 115.9, 267.3, 64.3, 123.4 and 188.2 kJ•mol⁻¹, C₂H₄ formation rates are 2.61 × 10⁻¹, 6.89 × 10⁻¹², 1.81 × 10⁻¹⁸, 3.42 × 10⁻¹⁴ and 6.73 × 10⁻¹¹ molecules•s⁻¹•site⁻¹. Wang *et al.* [35] also showed that Cu₂/GDY and Cu₃/GDY are favorable for gaseous C₂H₄ formation. However, on the Cu₄/GDY and Cu₁₃/GDY, see Figs. S18 and S19, CHCH₃ intermediate path is the most favorable, C₂H₄ selectivity is -104.6 and -42.4 kJ•mol⁻¹, the rates are 1.81 × 10⁻¹⁰ and 1.51 × 10⁻²⁰ molecules•s⁻¹•site⁻¹.

For the supported Pd_n/GDY (n=2, 3, 4, 7, 13, 38, 55) catalysts, on the Pd₄/GDY, Pd₇/GDY, Pd₃₈/GDY and Pd₅₅/GDY, see Figs. S20~S23, C₂H₄ desorption path is superior to other two paths with better C₂H₄ selectivity of 40.1, 57.8, 45.9 and 27.1 kJ•mol⁻¹, and C₂H₄ formation rates are 8.81 × 10⁷, 2.91 × 10⁻¹, 5.23 × 10⁻¹⁴ and 1.43 × 10⁻⁹ molecules•s⁻¹•site⁻¹, respectively. However, on the Pd₂/GDY and Pd₃/GDY, see Figs. S24 and S25, C₂H₄ intermediate path is preferred in kinetics with poor C₂H₄ selectivity of -44.8 and -68.7 kJ•mol⁻¹ and the rates of 1.20

 \times 10⁸ and 1.23 \times 10¹¹ molecules•s⁻¹•site⁻¹. Meanwhile, Wang *et al.* [35] also elucidated that Pd₂/GDY and Pd₃/GDY catalysts are favorable for C₂H₄ intermediate path. On Pd₁₃/GDY, see Fig. S26, C₂H₂ hydrogenation is easy to form CHCH₃ and then successive hydrogenation to form ethane with poor C₂H₄ selectivity (-56.4 kJ•mol⁻¹) and C₂H₄ formation rate is 2.81 \times 10⁻⁶ molecules•s⁻¹•site⁻¹.

3.4.2. Influences of cluster sizes on the selectivity and activity of C_2H_4 formation

As listed in Table 3, for the supported Cu_n/GDY catalysts, C_2H_4 selectivity is in sequence of $Cu_3/GDY>Cu_{55}/GDY>Cu_{38}/GDY>Cu_2/GDY>Cu_7/GDY>Cu_1/GDY> Cu_{13}/GDY>Cu_4/GDY, and the activity order is <math>Cu_1/GDY>Cu_2/GDY>Cu_4/GDY> Cu_{55}/GDY>Cu_3/GDY>Cu_{38}/GDY>Cu_7/GDY>Cu_{13}/GDY. C_2H_4$ formation activity generally shows a decreased trend with the increase of cluster size; while C_2H_4 selectivity does not depend on the cluster sizes. Among them, Cu_1/GDY has better C_2H_4 selectivity (12.3 kJ•mol⁻¹) and the best activity (8.67 × 10³ molecules•s⁻¹•site⁻¹); Cu_2/GDY has excellent C_2H_4 selectivity (115.9

Fig. 5. Free energy profiles of C_2H_2 semi-hydrogenation with the initial states, transition states and final states on Pd_1/GDY catalyst.

Table 3

 C_2H_4 selectivity ($S_{sel}/kJ \bullet mol^{-1}$), its formation rate (*r* or lgr/molecules $\bullet s^{-1} \bullet site^{-1}$) on the different carbon material supported M_n (M=Cu, Pd, n=1, 2, 3, 4, 7, 13, 38, 55) catalysts at 425 K.

Catalysts	$S_{ m sel}$	r	lgr	Catalysts	$S_{\rm sel}$	r	lgr
Cu ₁ /SVG	-167.2	$5.54 imes10^{-3}$	-2.257	_	_	_	_
Cu ₁ /NVG	-179.9	7.67×10^{-4}	-3.115	Pd ₁ /SVG	-89.2	7.02×10^7	7.846
Cu ₁ /N ₂ VG	-256.9	3.77×10^{-32}	-31.423	Pd ₁ /BVG	91.0	2.23×10^0	0.349
Cu_1/C_2N	172.5	1.35×10^{-6}	-5.870	Pd ₁ /DVG	-153.9	7.35×10^{-3}	-2.134
Cu_1/C_3N_4	157.9	$1.08 imes10^{-9}$	-8.967	Pd ₁ /C ₃ N ₄	16.7	$1.66 imes 10^4$	4.221
Cu ₁ /GDY	12.3	$8.67 imes10^3$	3.938	Pd ₁ /GDY	277.0	2.78×10^9	9.444
Cu ₂ /GDY	115.9	$2.61 imes10^{-1}$	-0.583	Pd ₂ /GDY	-44.8	$1.20 imes 10^8$	8.080
Cu ₃ /GDY	267.3	$6.89 imes10^{-12}$	-11.162	Pd ₃ /GDY	-68.7	$1.23 imes 10^{11}$	11.091
Cu ₄ /GDY	-104.6	1.81×10^{-10}	-9.742	Pd ₄ /GDY	40.1	$8.81 imes 10^7$	7.945
Cu ₇ /GDY	64.3	1.81×10^{-18}	-17.743	Pd ₇ /GDY	57.8	2.91×10^{-1}	-0.536
Cu ₁₃ /GDY	-42.4	$1.51 imes 10^{-20}$	-19.802	Pd ₁₃ /GDY	-56.4	$2.81 imes 10^{-6}$	-5.551
Cu ₃₈ /GDY	123.4	$3.42 imes10^{-14}$	-13.466	Pd ₃₈ /GDY	45.9	$5.23 imes10^{-14}$	-13.282
Cu ₅₅ /GDY	188.2	$6.73 imes10^{-11}$	-10.172	Pd ₅₅ /GDY	27.1	$1.43 imes10^{-9}$	-8.84

Fig. 6. The relationship of C_2H_4 selectivity and its formation activity with the Mulliken charge (*e*) of metal atoms on the different carbon material supported Cu and Pd single-atom catalysts.

kJ•mol⁻¹) and better activity (2.61 \times 10⁻¹ molecules•s⁻¹•site⁻¹).

For the supported Pd_n/GDY catalysts, C₂H₄ selectivity is Pd₁/ GDY>Pd₇/GDY> Pd₃₈/GDY>Pd₄/GDY>Pd₅₅/GDY>Pd₂/GDY>Pd₁₃/ GDY>Pd₃/GDY, and the activity is Pd₃/GDY>Pd₁/GDY>Pd₂/ GDY>Pd₄/GDY>Pd₇/GDY>Pd₁₃/GDY>Pd₅₅/GDY>Pd₃₈/GDY. The activity of C₂H₄ formation generally decreases with the increase of cluster sizes, while C₂H₄ selectivity does not depend on the cluster sizes. Among them, Pd₁/GDY has both outstanding C₂H₄ selectivity (277.0 kJ•mol⁻¹) and activity (2.78 × 10⁹ molecules•s⁻¹•site⁻¹); Pd₄/GDY also shows better C₂H₄ selectivity of 40.1 kJ•mol⁻¹ and the activity of 8.81 × 10⁷ molecules•s⁻¹•site⁻¹.

In general, C₂H₄ formation activity on Pd_n/GDY is much higher than that on Cu_n/GDY, whereas C₂H₄ selectivity on Cu_n/GDY is better than that on Pd_n/GDY. Further, as listed in Table 2, the cluster size affects the adsorption strength of C₂H₂ and C₂H₄, correspondingly, the adsorption free energy generally increases and then decreases with the change of cluster size; thus, the change of C₂H₄ adsorption free energy alters C₂H₄ desorption ability to affect C₂H₄ selectivity, and the change of C₂H₂ adsorption free energy alters C₂H₂ activation ability to affect C₂H₂ semihydrogenation activity, namely, the reaction rate depends on the cluster size.

3.4.3. Electronic properties of the supported M_n/GDY catalysts

On above four kinds of Cu₁/GDY, Cu₂/GDY, Pd₁/GDY and Pd₄/GDY screened out with better catalytic performance toward gaseous C₂H₄ formation, the average Mulliken charge of metal atoms is 0.015, 0.218, 0.198 and 0.194 *e*, respectively. As shown in Fig. 7, the relationship of average Mulliken charge with C₂H₄ selectivity and its formation activity (lgr) show a quasi-volcanic curve. Cu₁/GDY (0.015 *e*) and Pd₄/GDY (0.194 *e*) with less charge show poor C₂H₄ formation activity (3.938 and 7.945 molecules•s⁻¹•site⁻¹); Cu₂/GDY (0.222 *e*) with more charge exhibits the worst C₂H₄ formation activity (-0.583 molecules•s⁻¹•site⁻¹). However, Pd₁/GDY (0.198 *e*) with moderate charge exhibits the best C₂H₄ formation activity (9.444 molecules•s⁻¹•site⁻¹) and the excellent C₂H₄ selectivity (277.0 kJ•mol⁻¹).

4. Conclusions

DFT calculations are employed to identify the catalytic performance of C_2H_2 semi-hydrogenation on the different carbon material supported M_n (M=Cu, Pd) cluster catalysts with different sizes, aiming at obtaining the influences of support type and cluster size on C_2H_4 selectivity and its formation activity. Nine kinds of the carbon material are considered including the single-defect graphene, double-defect graphene, B-doped

Fig. 7. The relationship of C_2H_4 selectivity and its formation activity with the average Mulliken charge (*e*) of metal atoms on the supported M_n /GDY (M=Cu, Pd, n=1,2,4) catalysts.

graphene, N₁-doped graphene, N₂-doped graphene, N₃-doped graphene, g-C₂N, g-C₃N₄ and GDY. Different carbon material supported singleatom Cu or Pd catalysts were constructed to present the influence of support type, among them, the most suitable carbon material support with the best performance, GDY, was obtained; Further, Mn/GDY (M=Cu, Pd) catalysts were applied to present the influence of metal cluster size, indicating that the activity generally shows a decreasing trend with the increasing of cluster sizes. The analysis of electronic properties unveiled that the best catalytic performance of Pd1/GDY toward C2H2 semi-hydrogenation is ascribed to the moderate Mulliken charge of metal atom. In general, the activity of Pd_n/GDY is better than that of Cu_n/GDY; while the selectivity of Cu_n/GDY is better than that of Pd_n/GDY. Thus, adjusting the support type and cluster size of the carbon material supported metal cluster catalysts is one of the effective method to improve the catalytic performance of C₂H₂ semi-hydrogenation to gaseous C₂H₄ formation.

CRediT authorship contribution statement

Yamin Qi: Writing – original draft, Writing – review & editing, Formal analysis. Xiuxiu Shao: Writing – original draft, Formal analysis. Baojun Wang: Formal analysis, Supervision, Software, Conceptualization. Lixia Ling: Formal analysis. Riguang Zhang: Writing – original draft, Writing – review & editing, Data curation, Conceptualization, Funding acquisition, Resources, Software, Project administration, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China (Nos. 21776193 and 22078221).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.mcat.2021.111840.

Y. Qi et al.

Molecular Catalysis 514 (2021) 111840

References

- A.N.R. Bos, K.R. Westerterp, Mechanism and kinetics of the selective hydrogenation of ethyne and ethene, Chem. Eng. Process. 32 (1993) 1–7.
 N.S. Schbib, M.A. García, C.E. Gígola, A.F. Errazu, Kinetics of front-end acetylene
- hydrogenation in ethylene production, Ind. Eng. Chem. Res. 35 (1996) 1496–1505.
 J. Osswald, R. Giedigkeit, R. Jentoft, M. Armbruster, F. Girgsdies, K. Kovnir,
- [5] J. Osswald, K. Greugker, K. Jenott, M. Almbruster, F. Orgsutes, K. Kovini, T. Ressler, Y. Grin, R. Schlogl, Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions, J. Catal. 258 (2008) 210–218.
- [4] A. Sandell, A. Beutler, A. Jaworowski, M. Wiklund, K. Heister, R. Nyholm, J. N. Andersen, Adsorption of acetylene and hydrogen on Pd(111): Formation of a well-ordered ethylidyne overlayer, Surf. Sci. 415 (1998) 411–422.
- [5] B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study, J. Catal. 305 (2013) 264–276.
- [6] S. Leviness, V. Nair, A.H. Weiss, Acetylene hydrogenation selectivity control on PdCu/Al₂O₃ catalysts, J. Mol. Catal. 25 (1984) 131–140.
- [7] F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, J. K. Nørskov, Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene, Science 320 (2008) 1320–1322.
- [8] A. Sárkány, O. Geszti, G. Sáfrán, Preparation of Pd_{shell}-Au_{core}/SiO₂ catalyst and catalytic activity for acetylene hydrogenation, Appl. Catal. A: Gen. 350 (2008) 157–163.
- [9] N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B.W. Xiao, R.Y. Li, T.K. Sham, L.M. Liu, G.A. Botton, X.L. Sun, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction, Nat. Commun. 7 (2016) 13638.
- [10] H.T. Chung, D.A. Cullen, D. Higgins, B.T. Sneed, E.F. Holby, K.L. More, P. Zelenay, Direct atomic-level insight into the active sites of a high performance PGM-free ORR catalyst, Science 357 (2017) 479–484.
- [11] H. Yan, Y. Lin, H. Wu, W.H. Zhang, Z.H. Sun, H. Cheng, W. Liu, C.L. Wang, J.J. Li, X.H. Huang, T. Yao, J.L. Yang, S.Q. Wei, J.L. Lu, Bottom-up precise synthesis of stable platinum dimers on graphene, Nat. Commun. 8 (2017) 1070.
- [12] S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxidesupported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc. 131 (2009) 13898–13899.
- [13] Z. Xi, D.P. Erdosy, A. Mendoza-Garcia, P.N. Duchesne, J. Li, M. Muzzio, Q. Li, P. Zhang, S. Sun, Pd nanoparticles coupled to WO_{2.72} nanorods for enhanced electrochemical oxidation of formic acid, Nano Lett. 17 (2017) 2727–2731.
- [14] S.Q. Zhou, L. Shang, Y.X. Zhao, R. Shi, G.I.N. Waterhouse, Y.C. Huang, L.R. Zhang, T.R. Zhang, Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene, Adv. Mater. 31 (2019) 1900509–1900515.
- [15] F. Huang, Y.C. Deng, Y.L. Chen, X.B. Cai, M. Peng, Z.M. Jia, J.L. Xie, D.Q. Xiao, X. D. Wen, N. Wang, Z. Jiang, H.Y. Liu, D. Ma, Anchoring Cu₁ species over nanodiamond graphene for semi-hydrogenation of acetylene, Nat. Commun. 10 (2019) 4431.
- [16] H. Yan, X.X. Zhao, N. Guo, Z.Y. Lyu, Y.H. Du, S.B. Xi, R. Guo, C. Chen, Z.X. Chen, W. Liu, C.H. Yao, J. Li, S.J. Pennycook, W. Chen, C.L. Su, C. Zhang, J. Lu, Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity, Nat. Commun. 9 (2018) 3197.
- [17] X.H. Huang, H. Yan, L. Huang, X.H. Zhang, Y. Lin, J.J. Li, Y.J. Xia, Y.F. Ma, Z. H. Sun, S.Q. Wei, J.L. Lu, Toward understanding of the support effect on Pd₁ single-atom-catalyzed hydrogenation reactions, J. Phys. Chem. C 123 (2019) 7922–7930.
- [18] H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C.L. Wang, J.J. Li, S.Q. Wei, J.L. Lu, Singleatom Pd₁/Graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-Butadiene, J. Am. Chem. Soc. 137 (2015) 10484–10487.
- [19] M.M. Ugeda, I. Brihuega, F. Guineam, J.M. Gómez-Rodrìguez, Missing atom as a source of carbon magnetism, Phys. Rev. Lett. 104 (2010), 096804.
- [20] O.V. Yazyev, S.G. Louie, Topological defects in graphene: Dislocations and grain boundaries, Phys. Rev. B 81 (2010), 195420.
- [21] K.M. Fair, X.Y. Cui, L. Li, C.C. Shieh, R.K. Zheng, Z.W. Liu, B. Delley, M.J. Fold, S. P. Ringer, C. Stampfl, Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: A trend study from first principles, Phys. Rev. B 87 (2013), 014102.
- [22] M. Zhou, Y.H. Lu, Y.Q. Cai, C. Zhang, Y.P. Feng, Adsorption of gas molecules on transition metal embedded graphene: A search for high-performance graphenebased catalysts and gas sensors, Nanotechnology 22 (2011) 385–502.
- [23] M. Yan, Z.X. Dai, S.N. Chen, L.J. Dong, X.L. Zhang, Y.J. Xu, C.H. Sun, Single-iron supported on defective graphene as efficient catalysts for oxygen reduction reaction, J. Phys. Chem. C 124 (2020) 13283–13290.
- [24] B.R. Sathe, X.X. Zou, T. Asefa, Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction, Catal. Sci. Technol. 4 (2014) 2023–2030.
- [25] J.Y. Dai, J.M. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Appl. Phys. Lett. 95 (2009), 232105.
- [26] X.H. He, Q. He, Y.C. Deng, M. Peng, H.Y. Chen, Y. Zhang, S.Y. Yao, M.T. Zhang, D. Q. Xiao, D. Ma, B.H. Ge, H.B. Ji, A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation, Nat. Commun. 10 (2019) 3663.
- [27] T. Zhang, D. Zhang, X.H. Han, T. Dong, X.W. Guo, C.S. Song, R. Si, W. Liu, Y.F. Liu, Z.K. Zhao, Preassembly strategy to single Cu-N₃ sites inlaid porous hollow carbonitride spheres for selective oxidation of benzene to phenol, J. Am. Chem. Soc. 140 (2018) 16936–16940.

- [28] F.Y. Li, X.Y. Liu, Z.F. Chen, 1+1'>2: Heteronuclear biatom catalyst outperforms its homonuclear counterparts for CO oxidation, Small Methods 3 (2019), 1800480.
- [29] W.H. Zhong, Y.X. Liu, M.S. Deng, Y.C. Zhang, C.Y. Jia, O.V. Prezhdo, J.Y. Yuan, J. Jiang, C₂N-supported single metal ion catalyst for HCOOH dehydrogenation, J. Mater. Chem. A 6 (2018) 11105–11112.
- [30] N.N. Kong, X. Fan, F.F. Liu, L. Wang, H.P. Lin, Y.Y. Li, S.T. Lee, Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for nonoxidative propane dehydrogenation, ACS Nano 14 (2020) 5772–5779.
- [31] X.H. Haung, Y.J. Xia, Y.J. Cao, X.S. Zheng, H.B. Pan, J.F. Zhu, C. Ma, H.W. Wang, J. J. Li, R. You, S.Q. Wei, W.X. Huang, J.L. Lu, Enhancing both selectivity and coking-resistance of a single-atom Pd₁/C₃N₄ catalyst for acetylene hydrogenation, Nano Res. 10 (2017) 1302–1312.
- [32] Y. Zhao, M.Y. Zhu, L.H. Kang, The DFT study of single-atom Pd₁/g-C₃N₄ catalyst for selective acetylene hydrogenation reaction, Catal. Lett. 148 (2018) 2992–3002.
- [33] Z.S. Lu, S. Li, P. Lv, C.Z. He, D.W. Ma, Z.X. Yang, First principles study on the interfacial properties of NM/graphdiyne (NM=Pd, Pt, Rh and Ir): The implications for NM growing, Appl. Surf. Sci. 360 (2016) 1–7.
- [34] D.H. Xing, C.Q. Xu, Y.G. Wang, J. Li, Heterogeneous single-cluster catalysts for selective semihydrogenation of acetylene with graphdiyne-supported triatomic clusters, J. Phys. Chem. C 123 (2019) 10494–10500.
- [35] Y. Wang, Y.M. Qi, M.H. Fan, B.J. Wang, L.X. Ling, R.G. Zhang. C2H2 semihydrogenation on the PdxMy cluster/graphdyne catalysts: effects of cluster composition and size on the activity and selectivity. Green Energy Environ.. https://doi.org/10.1016/j.gee.2020.10.020.
- [36] W. Ye, S.M. Chen, Y. Lin, L. Yang, S.J. Chen, X.S. Zheng, Z.M. Qi, C.M. Wang, R. Long, J.F. Zhu, P. Gao, L. Song, J. Jiang, Y.J. Xiong, Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction, Chem 5 (2019) 2865–2878.
- [37] M. Boronat, A. Leyva-Perez, A. Corma, Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold, Accounts Chem. Res. 47 (2013) 834–844.
- [38] Q.M. Bing, W. Liu, W.C. Yi, J.Y. Liu, Ni anchored C₂N monolayers as low-cost and efficient catalysts for hydrogen production from formic acid, J. Power Sources 413 (2019) 399–407.
- [39] C.T. Kuo, Y.B. Lu, L. Kovarik, M. Engelbard, A.M. Karim, Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters, ACS Catal 9 (2019) 11030–11041.
- [40] H.Y. Ma, G.C. Wang, Selective hydrogenation of acetylene on Pt/TiO₂ (n=1, 2, 4, 8) surfaces: Structure sensitivity analysis, ACS Catal. 10 (2020) 4922–4928.
- [41] X.X Shi, Y. Lin, L. Huang, Z.H. Sun, Y. Yang, X.H. Zhou, E. Vovk, X.Y. Liu, X. H. Huang, M. Sun, S.Q. Wei, J.L. Lu, Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles, ACS Catal 10 (2020) 3495–3504.
- [42] B. Delley, From molecules to solids with the DMol³ approach, J. Chem. Phys. 113 (2000) 7756–7764.
- [43] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508–517.
- [44] B. Delley, Fast calculation of electrostatics in crystals and large molecules, J. Phys. Chem. 100 (1996) 6107–6110.
- [45] S. Grimme, Density functional theory with London dispersion corrections, Wires. Comput. Mol. Sci. 1 (2011) 211–228.
- [46] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phy. 132 (2010), 154104.
- [47] S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32 (2011) 1456–1465.
- [48] C.G. Zhou, J.P. Wu, A. Nie, R.C. Forrey, A. Tachibana, H.S. Cheng, On the sequential hydrogen dissociative chemisorption on small platinum clusters: a density functional theory study, J. Phys. Chem. C 111 (2007) 12773–12778.
- [49] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, A generalized synchronous transit method for transition state location, Comp. Mater. Sci. 28 (2003) 250–258.
- [50] A.J. McCue, C.J. McRitchie, A.M. Shepherd, J.A. Anderson, Cu/Al₂O₃ catalysts modified with Pd for selective acetylene hydrogenation, J. Catal. 319 (2014) 127–135.
- [51] B. Bridier, M.A.G. Hevia, N. López, J. Pérez-Ramíreza, Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply, J. Catal. 278 (2011) 167–172.
- [52] M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schloögl, Pd-Ga intermetallic compounds as highly selective semi-hydrogenation catalysts, J. Am. Chem. Soc. 132 (2010) 14745–14747.
- [53] A. Borodziński, G.C. Bond, Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction, Catal. Rev. 48 (2006) 91–144.
- [54] Y.M. Jin, A.K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith, M. Holbrook, J. Maj, J. Blackson, The influence of catalyst restructuring on the selective hydrogenation of acetylene to ethylene, J. Catal. 203 (2001) 292–306.
- [55] S.K. Kim, J.H. Lee, I.Y. Ahn, W.J. Kim, S.H. Moon, Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation, J. Catal. 364 (2018) 204–215.
- [56] J.T. Wehrli, D.J. Thomas, M.S. Wainwright, D.L. Trimm, N.W. Cant, Reduced foulant formation during the selective hydrogenation of C₂, C₃, and C₄ acetylenes, Stud. Surf. Sci. Catal. 68 (1991) 203–210.
- [57] I.Y. Ahn, J.H. Lee, S.S. Kum, S.H. Moon, Formation of C₄ species in the deactivation of a Pd/SiO₂ catalyst during the selective hydrogenation of acetylene, Catal. Today 123 (2007) 151–157.

Y. Qi et al.

Molecular Catalysis 514 (2021) 111840

- [58] G.C. Battiston, L. Dalloro, G.R. Tauszik, Performance and aging of catalysts for the selective hydrogenation of acetylene: a micropilot-plant study, Appl. Catal. 2 (1982) 1–17.
- [59] L. Yayun, Z. Jing, M. Xueru, Study on the formation of polymers during the hydrogenation of acetylene in ethylene ethane fraction, Proc. Joint Meeting Chem. Eng., Chem. Ind. Eng. Soc. China, AIChE, Beijing. 2 (1982) 688–702.
- [60] B. Yang, R. Burch, C. Hardacre, P. Hu, P. Hughes, Mechanistic study of 1, 3-butadiene formation in acetylene hydrogenation over the Pd-based catalysts using density functional calculations, J. Phys. Chem. C 118 (2014) 1560–1567.
- [61] M.J. Vincent, R.D. Gonzalez, Selective hydrogenation of acetylene through a short contact time reactor, AIChE J 48 (2004) 1257–1267.
- [62] J.B. Zhao, S.J. Zha, R. Mu, Z.J. Zhao, J.L. Gong, Coverage effect on the activity of the acetylene semihydrogenation over Pd-Sn catalysts: A density functional theory study, J. Phys. Chem. C 122 (2018) 6005–6013.