Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Application of density functional theory in studying CO_2 capture with TiO₂supported K₂CO₃ being an example

AppliedEnerg

Qiaoyun Qin^{a,1}, Hongyan Liu^{a,b,1}, Riguang Zhang^{a,c}, Lixia Ling^a, Maohong Fan^{c,*}, Baojun Wang^{a,*}

^a Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
^b College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, China

^c Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Preadsorbed H₂O makes CO₂ adsorption increase over K₂CO₃/TiO₂ sorbent.
- CO_2 and H_2O prefer to adsorb at the interface of K_2CO_3/TiO_2 .
- Carbonation reaction is governed by H₂O dissociation.
- The better K-based sorbent for CO₂ capture is proposed.

ARTICLE INFO

Keywords: Density-functional theory CO_2 capture K_2CO_3 Rutile

ABSTRACT

Solid sorbents based CO₂ capture has become increasingly important. Great progress has been achieved with experimental studies in this area. However, the density functional theory based capture study on the function of H_2O in CO₂ capture is lacking. This research was designed to make progress in this important area with TiO₂-supported K₂CO₃ being an example. Due to its high cost-effectiveness, dry K₂CO₃ is a promising sorbent for capturing CO₂. Yet challenges remain in accelerating the rate of the absorption process. The study of mechanism of the effect of H_2O on CO₂ adsorption as well as the carbonation reaction can help select and design better support for the sorbent. Up to now, it is open. In this work, the adsorption and reaction of CO₂ over K₂CO₃ loaded on a rutile (1 1 0) surface have been studied using theoretical calculations. The results show that the CO₂ adsorption is increased when H₂O appears, and carbonation reaction and IV and H₂O dissociation are CO₃ anion with transferred H via H₂O dissociation combining. In addition, H transfer step appears when support TiO₂ exists compared to that on pure K₂CO₃ sorbent. The kinetic modeling indicates that the H₂O dissociation may limit the carbonation reaction reage TiO₂ support material can assist CO₂ sorption with the solid K₂CO₃ based CO₂ capture technology. It is expected that the theoretical study sheds light on the preparation of cost-effective CO₂ sorbents in the future.

* Corresponding authors.

¹ The two authors have equal contribution to the paper.

https://doi.org/10.1016/j.apenergy.2018.09.114

Received 24 May 2018; Received in revised form 1 August 2018; Accepted 9 September 2018 0306-2619/@ 2018 Elsevier Ltd. All rights reserved.

E-mail addresses: mfan@uwyo.edu (M. Fan), wangbaojun@tyut.edu.cn (B. Wang).

1. Introduction

Global warming caused by greenhouse gas emission has, in recent years, been recognized as a major risk to mankind [1–3]. Carbon dioxide (CO₂) is one of the major greenhouse gases, and it has been reported that one-third of CO₂ emissions worldwide come from fossil fuelbased power plants [4]. Hence, capturing CO₂ emitted from the flue gas of power plants has been considered to be a potentially effective approach to controlling atmospheric CO₂ levels.

Methods explored to remove CO₂ from flue gas include membrane separation (separated CO_2 from a CO_2 -N₂ mixed gas) [5], absorption with a solvent (CO₂ absorption with aqueous, blends of monoethanolamine and N-methyldiethanolamine, etc.) [6,7], and adsorption on molecular sieves (adsorption-desorption on molecular sieves by pressure or temperature swing) [8,9]. However, these methods are costly and consume large amounts of energy. One of the improved techniques for the removal of CO₂ is the chemical absorption of CO₂ with dry renewable K₂CO₃ sorbents [10,11] and K₂CO₃-promoted hydrotalcite sorbents [12,13]. Hydrotalcites have the unique property of CO₂ sorption at high temperatures (200–600 °C), which can be applied to the direct CO₂ removal from flue gases without cooling process. The equilibrium CO₂ sorption uptake of hydrotalcite could be much more increased by impregnation with K₂CO₃. However, the regeneration temperature is high. Meanwhile, K₂CO₃ sorbents are employed in CO₂ absorption from flue gas of fossil-fueled based thermal power plants at low temperatures (50-90 °C). The use of K₂CO₃ sorbents can be highly cost effective and an energy efficient way to remove CO2 from flue gas following the reaction $K_2CO_3 + CO_2 + H_2O \leftrightarrow 2KHCO_3$. In addition, the global carbonation reaction rate for pure K_2CO_3 is rather slow [14]. We therefore suggested that, in preparation support, a promoter or special technique may be needed to modify the structure of the K₂CO₃ surfaces to strengthen the adsorption of CO₂, thereby further improving conversion of carbonate to the bicarbonate based our theoretical calculation.

Some supports such as SiO₂, Al₂O₃, CaO, MgO, TiO₂ and activated carbon (AC) have been used in alkali metal-based sorbents to enhance CO₂ capture. Lee et al. [15-18] and Zhao et al. [19-22] found that sorbents of K2CO3/AC, K2CO3/TiO2, K2CO3/MgO, and K2CO3/Al2O3 showed excellent CO₂ capture capacity; on the other hand, those sorbents were completely regenerated above 130, 130, 350, and 400 °C, respectively. However, the CO2 capture capacities of K2CO3/Al2O3 and K₂CO₃/MgO decreased during multiple absorption/regeneration cycles (absorption at 60 °C and regeneration at 150 °C), mainly due to the formation of KAl(CO₃)₂(OH)₂, K₂Mg(CO₃)₂, and K₂Mg(CO₃)₂·4(H₂O), which did not completely convert to the original K₂CO₃ phase. However, unlike K₂CO₃/Al₂O₃ and K₂CO₃/MgO, a KHCO₃ crystal structure was formed during CO₂ absorption on K₂CO₃/AC and K₂CO₃/TiO₂ sorbent. This phase could easily be converted into the original phase during regeneration, even at a low temperature (130 °C). Meanwhile, Lee et al. [23] investigated the structure effects of potassium-based TiO₂ (anatase) sorbents on CO₂ capture capacity. Under the temperature of calcine, the CO₂ capture capacity of the sorbent was reduced due to the undesired formations of K2Ti2O5, K2Ti6O13, and K2Ti4O9. However, the rutile structure of TiO₂ can prevent the formation of new structures such as K₂Ti₂O₅ and K₂Ti₆O₁₃, thus significantly affect CO₂ capture capacity. In addition, TiO(OH)2 has been found to be a promising catalytic support for not only improving CO₂ capture of solid sorbents [24,25], but dramatically reducing energy consumption [26].

The reaction mechanism for CO_2 uptake by K_2CO_3 and the role of H_2O in the reaction are open. Mahinpey et al. [27] reported that K_2CO_3 hydration to form K_2CO_3 ·1.5 H_2O and carbonation occur in parallel, without direct conversion from K_2CO_3 ·1.5 H_2O to KHCO₃. Further, Mahinpey et al. [28] discussed the kinetic behavior of solid K_2CO_3 under CO_2 capture and brought up that the carbonation reaction are limited by adsorption, not chemical reaction based on proposed Langmuir-Hinshelwood model. However, Zhao et al. [29] and Li et al. [30]

suggested that K₂CO₃·1.5H₂O can react with CO₂ in a fast kinetic rate. Meanwhile, Li et al. [31] determined that hydration reaction occurred through the reaction between K₂CO₃ and the steam, and approximately 75% of K₂CO₃ were converted to K₂CO₃·1.5H₂O in high temperature, however, KHCO₃ cannot directly react with the steam to produce K₂CO₃·1.5H₂O. Although there have been some experimental explorations into the mechanism of carbonation reaction, it is difficult to understand the mechanism completely due to the complexity of CO_2 capture with K₂CO₃ sorbent. Quantum mechanics calculation is a useful tool to help clarify the detail of the reaction. Gao et al. [32] investigated the carbonation reaction only on pure K₂CO₃ with monoclinic structure using the density functional theory (DFT) method, proposing that the carbonation reaction occurs via the single "one-step mechanism", i.e., the OH group resulting from the dissociation of H₂O attacking the C of CO₂ to form bicarbonate. Also, the same reaction on low index surfaces of pure K₂CO₃ with both cubic and monoclinic structures was studied, and it was confirmed that the carbonation reaction can directly proceed either via the interaction between OH resulting from H₂O dissociation and the C atom of CO₂ on monoclinic and hexagonal K₂CO₃, or between the OH group from H₂O dissociation reacting and gaseous CO₂ on hexagonal K₂CO₃, i.e., the carbonation reaction is both a "one-step" and a "two-step mechanism" [14]. Further, investigating the CO₂ desorption reaction on an anatase-TiO₂ (101) surface by DFT method, Wu et al. [33] concluded that the formation of the unstable intermediary TiO $(OH)^+$ and OH^- by the adsorption of H₂O on the catalyst TiO₂ surface can accelerate the reaction. However, in their work the initial states are not KHCO₃, but rather hydroxyl and carbonyl states. On the other hand, adsorption and carbonation of CO2 and H2O on pure rutile or anatase have been investigated extensively. For instance, investigating the coadsorption properties of CO2 and H2O on rutile of TiO2 (110) using a dispersion-corrected DFT study, Sorescu et al. [34] found that the coadsorbed H₂O or OH species slightly increase the CO₂ adsorption energies. Other influence factors, including the solvent effect [35] and the effect of excess electron and hole [36], have also been investigated. However, CO₂ captured by TiO₂-supported K₂CO₃ sorbent still has not been investigated using a theoretical method. Does TiO2-supported K_2CO_3 capture CO_2 better than pure K_2CO_3 or clean TiO₂? What is the capture mechanism in detail? Where is the active site? The above questions are open.

In order to increase CO₂ capture efficiency, it is imperative to make clear the mechanism by which K_2CO_3/TiO_2 captures CO₂. This work focuses mainly on the mechanisms of the K_2CO_3/TiO_2 (rutile) capture of CO₂ through DFT calculation, due to the relatively simpler capture/ regeneration mechanism on rutile-supported K_2CO_3 than other media. At the same time, the results are compared with those using pure K_2CO_3 or clean TiO₂ so that the CO₂ capture mechanism can be comprehended better.

2. Computational details

2.1. Computational methods

The DFT approach has been proved to be very successful in modeling the ground state properties of various structures, and has thus been widely used to predict the structural and energetic properties. DFT with Hubbard U correction is to treat the strong on-site Coulomb repulsion, which is not correctly described by LDA or GGA, mainly employed to calculate and analysis the refined electronic structures. At present, geometric optimization and transition state search cannot yet be carried out using the DFT+U method in the CASTEP code, largely because DFT alone has been considered fairly reliable in most cases for structural optimization, resulting in lattice parameters below 1% level of inaccuracy [37,38].

Previous experimental and theoretical studies have demonstrated that CO_2 molecules interact relatively weakly with the rutile(1 1 0) and K_2CO_3 surface. Thus, one might presume that long-range dispersion

interactions would be important for characterizing the CO₂-surface interactions.

In this study, DFT calculations were performed to measure CO₂ and H₂O adsorption and carbonate formation processes on the surface of K₂CO₃ loading on TiO₂ using periodic slab models [39–42]. All calculations were performed using the Cambridge Sequential Total Energy Package (CASTEP) [38] of Materials Studio 8.0 from Accelrys with the General Gradient Approximation (GGA) Perdew-Wang 1991 (PW91) functional [43]; the pseudo potential is ultrasoft. The DFT-D3 correction [44] was incorporated with the PW91 functional to handle dispersion interaction, and a large convergence of the plane wave expansion was obtained with an energy cutoff of 340 eV. For geometry optimization, the Brillouin zone was sampled in a $2 \times 2 \times 1$ Monkhorst-Pack set [45]. The geometries were not optimized until the energy, force and max displacement converged to 2.0×10^{-5} eV/atom, 0.05 eV/Å and 2×10^{-3} Å, respectively. Useful thermodynamic data can be calculated based on calculation of the phonon frequencies.

Before adspecies adsorption, the binding energy of K_2CO_3 and TiO_2 , was evaluated according to the following formula:

$$E_{\rm b} = E_{\rm (K_2CO_3/TiO_2)} - E_{\rm (K_2CO_3)} - E_{\rm (TiO_2)}$$
(1)

where $E_{(K_2CO_3/TiO_2)}$ is the total energy of the whole system when K_2CO_3 is deposited on TiO₂, $E_{(K_2CO_3)}$ is calculated by putting a K_2CO_3 unit in a 10 Å × 10 Å × 10 Å box, and $E_{(TiO_2)}$ is the energy of clean TiO₂ (1 1 0) slab.

The adsorption energy is evaluated according to the following formula:

$$E_{\text{ads}} = E_{(\text{adsorbate/K}_2\text{CO}_3/\text{TiO}_2)} - E_{(\text{K}_2\text{CO}_3/\text{TiO}_2)} - E_{(\text{adsorbate})}$$
(2)

where $E_{(adsorbate/K_2CO_3/TiO_2)}$ is the total energy of the surface of K₂CO₃/TiO₂ with adsorbate; $E_{(adsorbate)}$ is the energy of the free adsorbate (H₂O or CO₂), which is calculated by putting adsorbate in a 10 Å × 10 Å × 10 Å box; And $E_{(K_2CO_3/TiO_2)}$ is the total energy of K₂CO₃ supported on TiO₂.

The adsorption energy of CO_2 co-adsorption with other species is defined as:

$$E_{\rm co-ads} = E_{\rm (CO_2/H_2O/K_2CO_3/TiO_2)} - E_{\rm (H_2O/K_2CO_3/TiO_2)} - E_{\rm (CO_2)}$$
(3)

where $E_{\rm (CO_2/H_2O/K_2CO_3/TiO_2)}$ is the total energy of the surface of K₂CO₃/TiO₂ with adsorbates H₂O and CO₂, $E_{\rm (H_2O/K_2CO_3/TiO_2)}$ is the total energy of the surface of K₂CO₃/TiO₂ only with adsorbate H₂O, and $E_{\rm (CO_2)}$ is the energy of the free CO₂ obtained by putting CO₂ in a 10 Å \times 10 Å \times 10 Å box.

The standard molar Gibbs free energy for gaseous species and adsorbed species can be calculated using the following formula [46]:

$$G^{\theta}(T, p) = E_{\text{total}} + E_{ZPE} + U^{\theta} - TS^{\theta} + \gamma RT \left[1 + \ln\left(\frac{p}{p^{\theta}}\right) \right]$$
(4)

$$U_{Vib}^{\theta} = RT \sum_{i} \frac{hv_i/k_{\rm B}T}{e^{hv_i/k_{\rm B}T} - 1}$$
(5)

$$S^{\theta} = R \sum_{i=1}^{n} -\ln(1 - e^{hv_i/k_BT}) + \frac{hv_i/k_BT}{e^{hv_i/k_BT} - 1}$$
(6)

where E_{total} refers to the total energy obtained directly from DFT calculations, R is the gas constant, p is the partial pressure of the gas-phase molecules, and γ is 0 for surface adsorbed species, and 1 for gaseous molecule; E_{ZPE} is the zero-point vibrational energy; U^{θ} and S^{θ} are the thermal energy and entropy, respectively.

In addition, the activation energy E_a and reaction energy ΔE are calculated according to the following formula:

$$E_{\rm a} = E_{\rm TS} - E_{\rm R} \tag{7}$$

$$\Delta E = E_{\rm P} - E_{\rm R} \tag{8}$$

where $E_{\rm R}$, $E_{\rm TS}$ and $E_{\rm P}$ are the energies of reactants, transition states and

products in an elementary reaction, respectively.

The reaction rate constants (*k*) can be obtained using harmonic transition state theory [47]:

$$k = \frac{k_{\rm B}T}{h} \frac{q_{\rm TS}}{q_{\rm R}} \exp(-\frac{E_{\rm act}}{k_{\rm B}T})$$
(9)

$$q = \frac{1}{\prod_{i=1}^{\text{Vibration}} 1 - \exp(-\frac{hv_i}{k_{\text{BT}}})}$$
(10)

where $k_{\rm B}$ is the Boltzmann constant, T is the actual temperature (350 K), and $E_{\rm act}$ represents the DFT-calculated and zero-point-corrected activation energy.

2.2. Computational model

Unlike a sorbent prepared using anatase structure TiO_2 , Lee et al. [23] determined that sorbent prepared by impregnating TiO_2 having a rutile structure with 30% K_2CO_3 is of the constant capacity of CO_2 capture. Additionally, it is easy to regenerate K_2CO_3 supported by TiO_2 with rutile structure after CO_2 capture. Therefore, rutile is considered as the support in this work.

The crystallographic data for rutile bulk structure used in this work was taken from the Inorganic Crystal Structure Database (ICSD-200391). The structure was subsequently geometrically optimized (energy minimization) to test the methods used in this work, and the calculated lattice parameters of bulk rutile are a = 4.646 Å and c/a = 0.637 Å, which are in good agreement with the experimental results of a = 4.594 Å and c/a = 0.644 [48] (i.e., the deviations are only 1.13% and 1.08%, respectively). This indicates that the employed method is suitable for carrying out the calculations in this work.

Being of the minimal energy, (110) surface of rutile is preferentially expressed in macroscopic crystal morphologies, and has been assumed to dominate the surface chemistry [49]. Herein, a (4×2) supercell was used to represent rutile TiO₂(110) containing five layers, with the bottom two layers kept frozen at bulk optimized positions and the upper three layers allowed to relax. Vacuum thickness (size of unit cell perpendicular to slab-slab thickness) was set to be 15 Å, which is large enough to avoid unnecessary potential surface-surface interaction. The electrons transfers were also calculated for comparison through Mulliken population analysis.

For the computational model, a K_2CO_3 monomer supported on the rutile (1 1 0) surface was used to represent the active component of K_2CO_3 deposited on TiO₂, in which the structure of K_2CO_3 is composed of nearly planar CO₃ anions and K cations coordinated to oxygen atoms.

3. Results and discussion

3.1. TiO_2 supported K_2CO_3

There are three types of surface structures for carbonate anion deposited on oxide, i.e., bidendate, mondendate and bridge structures [50]; the position of the K species on the TiO_2 (1 1 0) is between the bridging oxygen [51]. Based on the above position and surface structures, the possible configurations of K_2CO_3 deposited on $TiO_2(110)$ were explored, and the results showed that carbonate anion of K_2CO_3 favors binding on the surface of TiO_2 in bridge structure, i.e., the two O atoms from carbonate bind with two Ti atoms of surface. The distances are 1.967 and 1.969 Å, respectively, and the distances of K cations and O atoms of the surface are 2.589 and 2.800 Å, respectively (Fig. 1). The calculated binding energy is -711.1 kJ·mol⁻¹, indicating that K_2CO_3 is bound substantially stronger on TiO_2 (1 1 0).

We also performed PDOS analysis for the supported configurations (Fig. 2). There are many resonance peaks between s-, p-from O in K_2CO_3 and s-, p-, d-from Ti, confirming strong interaction between K_2CO_3 and TiO₂ support, which indicating that the new phase is not easy to form in the calcination process. This is consistent with the experimental results

Fig. 1. The main model of $K_2 \text{CO}_3$ loaded on (4 \times 2) rutile of TiO_2 (1 0 0) surface.

Fig. 2. PDOS plots for $K_2 CO_3$ deposit on TiO_2 (110) surface. (O from $K_2 CO_3$ and Ti from TiO_2).

[23] that sorbent prepared by impreganation of TiO₂ having the rutile structure almost did not transform into new structure such as $K_2Ti_2O_5$ and $K_2Ti_6O_{13}$ below 500 °C.

3.2. CO₂ and H₂O adsorption

For the K_2CO_3 loaded on (4×2) rutile $(1\ 1\ 0)$ surface, investigation of the adsorption of CO_2 and H_2O on the surface is lacking. Here, stable adsorption configurations were found, marked as C(1)–C(4) for CO_2 adsorption, W(1)–W(2) for H_2O molecular adsorption, and DW(1)–DW(2) for H_2O dissociative adsorption (Fig. 3). The corresponding adsorption energies and structural parameters, as well as Mulliken charges, are listed in Table 1.

3.2.1. CO₂ adsorption

For CO₂ adsorption, there are four different binding configurations of CO₂ on K₂CO₃ loaded on TiO₂ (1 1 0) surface. In C(1) and C(2), the CO₂ molecule is adsorbed at the interface of K₂CO₃ and TiO₂, in which an O atom from adsorbed CO₂ is located above a Ti site, and the whole CO₂ maintains a linear configuration, tilting relative to the surface normally toward a nearby bridge O site on the TiO₂ surface. The distances of Ti and the O of CO₂ are 2.755 and 2.809 Å, and the distances of K and the nearest neighboring O of CO₂ are 2.873 and 3.003 Å, respectively. The adsorption energies are -43.4 and -40.5 kJ·mol⁻¹, respectively. In C(3) and C(4), the CO₂ molecule is adsorbed on the support TiO₂. CO₂ is adsorbed along the Ti row in a lying-down configuration in C(3) with the adsorption energy of -31.8 kJ·mol⁻¹. Meanwhile, CO₂ is adsorbed on the top of the bridge oxygen atom rather than in the middle of two bridge oxygen atoms in C(4), with the adsorption energy of $-23.2 \text{ kJ} \cdot \text{mol}^{-1}$. Analyzed by the Mulliken charge, it is found that there are a few electrons transferred from the interface of K₂CO₃/TiO₂ as well as the surface of TiO₂ to the CO₂, which changes the C–O bond slightly.

The adsorbed configurations discussed above are similar to those of CO₂ adsorbed on TiO₂ (110) with or without the H₂O environment obtained by Liu et al. [35]. However, the adsorption energies are larger than those on pure TiO_2 (110), but smaller than those on $TiO_2(110)$ with H_2O solvent effect and pure K_2CO_3 [14]. In order to compare the effect of the K₂CO₃/TiO₂ interface on the adsorption of CO₂, we also investigated the adsorption of CO_2 on clean TiO₂ (1 1 0). After removing the K₂CO₃ from TiO₂, there are three configurations for the adsorption of CO_2 on TiO_2 (110) corresponding to C(1), C(3) and C(4) in Fig. 3 (note: C(1) is equal to C(2) in such a case). The calculated adsorption energies are -33.8, -32.8 and $-23.2 \text{ kJ} \cdot \text{mol}^{-1}$ on clean TiO₂ (110) surface, respectively. The results are almost consistent with our adsorption energies obtained with CO₂ adsorbed on the support TiO₂ of K₂CO₃/TiO₂, but lower than that with CO₂ adsorbed at the interface of K₂CO₃/TiO₂. Therefore, we will use the results from the support TiO₂ of K₂CO₃/TiO₂ instead of those from pure TiO₂ in the following study. In addition, our calculated results about CO₂ adsorbed on rutile (110) surface with DFT-D3 are almost in agreement with those by Sorescu et al. [34], whose results are -42.5, 37.6 and $-21.2 \text{ kJ} \cdot \text{mol}^{-1}$ using DFT+U method. This can further confirm that DFT-D3 method also is suitable for carrying out the calculation to investigate the geometry and reaction process in this work.

On the other hand, the heat of adsorption, which is a measure of the energy required for regeneration, should be substantially low. Heats of adsorption are generally in the range of -25 to -50 kJ·mol⁻¹ for physisorption cases [52]. Interestingly, our calculated adsorption energies of CO₂ are -23.2 to -43.4 kJ·mol⁻¹, which is consistent with the experimental results. The identical results guarantee the confidence of our calculated data.

3.2.2. H₂O adsorption

3.2.2.1. Molecular adsorption. There are two different binding configurations of H₂O over K₂CO₃ loaded on TiO₂ (110) surface. In the most stable adsorption configuration, W(2), the O atom of the H₂O molecule interacts with a surface Ti atom and a K cation, and forms a hydrogen bond to a surface O_b atom; the adsorption energy of this configuration is $-98.4 \text{ kJ} \cdot \text{mol}^{-1}$. However, in the other adsorption configuration, W(1), the O atom of the H₂O molecule interacts only with a surface Ti atom and forms a hydrogen bond to a surface O_b atom; the adsorption energy of this configuration is $-81.0 \text{ kJ} \cdot \text{mol}^{-1}$, which is smaller than that in W(2) due to less interaction with the K₂CO₃. Obviously, H₂O prefers to adsorb at the interface between K₂CO₃ and TiO_2 in W(2) than on the surface of support TiO_2 in W(1). It has been found that the adsorption energy of H₂O over K₂CO₃ deposited on TiO₂ (110) surface is a little stronger than that on TiO₂ (110) by Bandura et al. [53], who obtained the adsorption energy of $-92.0 \text{ kJ} \cdot \text{mol}^{-1}$. Those are stronger than the result obtained by Sahoo et al. [54], which showed the binding strength of H_2O of $60.8 \text{ kJ} \cdot \text{mol}^{-1}$. In addition, the adsorption of H₂O on pure K₂CO₃ up to 126.4 kJ·mol⁻¹ [14] is stronger than that at the interface of K_2CO_3/TiO_2 and support of TiO₂.

3.2.2.2. Dissociative adsorption. In recent studies, it was found that H_2O molecules not only remain intact when adsorbed at low temperature at monolayer coverage, but also that a small portion of H_2O monomers can dissociate, with the fraction of such dissociated monomers increasing with increased temperature [55,56]. Accordingly, we also investigated the dissociative adsorption of H_2O on K_2CO_3/TiO_2 . Starting from the stable adsorption of H_2O on the sorbent with the configurations of W(1) and W(2), the dissociated H_2O molecule leads to formation of a terminal hydroxyl (marked as OH_t , adsorbed on the top of Ti) and a bridging hydroxyl (marked as OH_b , in which O is from TiO₂, which expresses that H_b is adsorbed on O). The distances between the H

Fig. 3. Top views of the main adsorption configurations of CO_2 and H_2O on the K_2CO_3 -loaded TiO_2 (1 1 0) surface [configurations C(1)–C(4) for CO_2 adsorption; configurations W(1) and W(2) for H_2O molecular adsorption; configurations DW(1) and DW(2) for H_2O dissociative adsorption]. For increased clarity, the oxygen atoms of CO_2 and H_2O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in OH_b and the O atom in OH_t are 2.431 and 2.259 Å in DW(1) and DW (2), and the adsorption energies of H_2O are -70.4 and $-117.7 \text{ kJ} \cdot \text{mol}^{-1}$, respectively.

Whether H_2O is adsorbed in the form of molecule or dissociation, the interaction between H_2O and the K_2CO_3 loaded on TiO_2 (110) surface is much stronger than that between CO_2 and the K_2CO_3 loaded on TiO_2 (110) surface. This implies that when H_2O is adsorbed firstly on the TiO_2 (110) surface, CO_2 molecules will not be able to displace the adsorbed H_2O molecules. This finding suggests that pre-adsorbed H_2O blocks CO_2 adsorption, and it is consistent with the results on pure $TiO_2(110)$ obtained by Henderson et al. [57] and Sorescu et al. [34].

3.3. CO₂-H₂O co-adsorption

Because the adsorption of H_2O is far stronger than that of CO_2 , when CO_2 is being captured, pre-adsorbed H_2O has an effect on CO_2 adsorption that cannot be ignored in the process. Therefore, the co-

adsorption of CO2-H2O needs to be investigated.

3.3.1. CO_2 and molecular H_2O co-adsorption

We considered co-adsorption of H_2O with a CO_2 molecule on K_2CO_3/TiO_2 , based on the aforementioned four-adsorption configuration of CO_2 . The largely CO_2 -H₂O configurations are marked as M(1)–M (4), shown in Fig. 4, and the corresponding adsorption energies, structural parameters, and Mulliken charges are given in Table 2.

For all co-adsorption configurations, M(1), M(3) and M(4) represent CO_2 adsorbed on a Ti site based on the W(2) structure of H_2O adsorption on a TiO₂ surface; meanwhile, M(2) expresses CO_2 adsorbed on a Ti site based on the W(1) structure of H_2O adsorption at the interface of K_2CO_3/TiO_2 . These adsorbed configurations cause the formation of a hydrogen bond between the H_2O molecule and one of the O atoms of CO_2 , with the bond angle of the CO_2 molecule being slightly decreased, which leads to a slight increase in CO_2 adsorption energy. The adsorption energies of M(1), M(2), M(3) and M(4) are increased by 1.9,

Table 1

Adsorption energies, representative geometrical parameters, and *Mulliken charge* of CO_2 and H_2O molecules adsorbed at different sites on K_2CO_3 loaded on TiO_2 (110) surface.

Configurations	r(Ti-O _c) ^a (Å)	$r(C-O_b)^b$ (Å)	r(K-O _c) ^a (Å)	r(C-O) (Å)	α(OCO) (°)	$E_{ads}(kJ \cdot mol^{-1})$	Charge (e)
CO ₂ (gas)				1.184, 1.184	180.0		
C1	2.755	2.927	2.873	1.176, 1.183	177.2	-43.4	-0.03
C2	2.809	2.958	3.003	1.176, 1.186	176.4	-40.5	-0.07
C3	2.763, 2.999	-	4.986	1.181, 1.182	178.6	-31.8	-0.05
C4	-	2.655	4.405	1.180, 1.185	176.2	-23.2	-0.06
Configurations	r(Ti-O _w) ^c (Å)	$r(O_b-H)^c$ (Å)	r(K-O _w) ^c (Å)	r(O _w -H) ^c (Å)	$\alpha(HO_wH)$ (°)	$E_{\rm ads} ({\rm kJ} \cdot {\rm mol}^{-1})$	Charge (e)
Configurations H ₂ O(gas)	r(Ti-O _w) ^c (Å)	r(O _b -H) ^c (Å)	r(K-O _w) ^c (Å)	r(O _w -H) ^c (Å)	α(HO _w H) (°) 104.2	$E_{\rm ads} ({\rm kJ \cdot mol}^{-1})$	Charge (e)
Configurations H ₂ O(gas) W1	r(Ti-O _w) ^c (Å) 2.355	r(O _b -H) ^c (Å) 1.916	r(K-O _w) ^c (Å)	r(O _w -H) ^c (Å) 0.979, 0.979 0.975, 0.999	α(HO _w H) (°) 104.2 109.2	$E_{\rm ads} ({\rm kJ \cdot mol}^{-1})$ -81.0	Charge (<i>e</i>)
Configurations H ₂ O(gas) W1 W2	r(Ti-O _w) ^c (Å) 2.355 2.538	r(O _b -H) ^c (Å) 1.916 2.735	r(K-O _w) ^c (Å) - 2.711	r(O _w -H) ^c (Å) 0.979, 0.979 0.975, 0.999 0.980, 0.988	α(HO _w H) (°) 104.2 109.2 104.2	E _{ads} (kJ·mol ⁻¹) −81.0 −98.4	Charge (e) 0.03 0.02
Configurations H ₂ O(gas) W1 W2 DW(1)	r(Ti-O _w) ^c (Å) 2.355 2.538 1.842	r(O _b -H) ^c (Å) 1.916 2.735 0.981	r(K-O _w) ^c (Å) - 2.711 -	r(O _w -H) ^c (Å) 0.979, 0.979 0.975, 0.999 0.980, 0.988 0.978, 2.257	α(HO _w H) (°) 104.2 109.2 104.2 -	$\frac{E_{\rm ads} (\rm kJ \cdot mol^{-1})}{-81.0}$ -98.4 -70.4	Charge (e) 0.03 0.02 0.04
Configurations H ₂ O(gas) W1 W2 DW(1) DW(2)	r(Ti-O _w) ^c (Å) 2.355 2.538 1.842 1.903	r(O _b -H) ^c (Å) 1.916 2.735 0.981 0.981	r(K-O _w) ^c (Å) - 2.711 - 2.632	r(O _w -H) ^c (Å) 0.979, 0.979 0.975, 0.999 0.980, 0.988 0.978, 2.257 0.977, 2.431	α(HO _w H) (°) 104.2 109.2 104.2 - -	$E_{ads} (kJ \cdot mol^{-1})$ - 81.0 - 98.4 - 70.4 - 117.7	Charge (e) 0.03 0.02 0.04 - 0.06

 $^{\rm a}\,$ The O_c is refer to O atom of CO_2 molecule.

^b The O_b is refer to a generic surface bridging O atom.

 $^{\rm c}~$ The $O_{\rm w}$ is refer to O atom of H_2O molecule.

Fig. 4. Top views of the main co-adsorption configurations of CO_2 and H_2O species over the K_2CO_3 loaded on rutile (1 1 0) surfaces. For increased clarity, the oxygen atoms of CO_2 and H_2O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

17.4, 8.7 and 18.3 kJ·mol⁻¹, respectively. Certainly, the smallest increase from C(1) to M(1) it is for these co-adsorption configurations, while the biggest increment it is from C(4) to M(4). Sorescu et al. [34] concluded that the largest enhancement of the CO₂ adsorption energy may be observed for configurations that are most weakly bound to the surface in the absence of H₂O, which is consistent with our findings. In addition, the presence of the H₂O molecule may increase the adsorption stability of the CO₂ molecule. Even if the co-adsorption of H₂O with CO₂ makes the adsorption of CO₂ increase in the above four cases, the most stable co-adsorption configuration of CO₂ with H₂O is CO₂ adsorption at the interface of K₂CO₃/TiO₂ with M(2) configuration. In addition, the adsorption energy increments of CO₂ is larger on K₂CO₃/TiO₂ (110) than those on pure TiO₂ (110) [34]. Liu et al. [35] also found that the co-adsorbed H₂O can increase the binding energy of CO₂ by 6.1 to 11.6 kJ·mol⁻¹ in both the vacuum and solvent cases.

3.3.2. CO_2 and dissociative H_2O co-adsorption

Because adsorbed H₂O molecules can dissociate to form OH_t and OH_b species, we need to consider the interaction of CO₂ with the two types of hydroxyl groups when studying the co-adsorption of CO₂ and H₂O molecules on a K₂CO₃-loaded TiO₂ (1 1 0) surface. Starting from relatively stable adsorption configurations of CO₂, we have also analyzed the co-adsorption of a CO₂ molecule over K₂CO₃ loaded on a (4 × 2) TiO₂ (1 1 0) surface with terminal OH_t and bridging OH_b species, as well as with H. The corresponding co-adsorption configurations, denoted DA(1)–DA(4), are shown in Fig. 5; the corresponding adsorption energies (*E*_{ads}) and structural parameters as well as Mulliken charges, are given in Table 3.

Similar to the case with CO₂ and H₂O co-adsorption, the co-adsorption of both OH and H also enhances the adsorption energy of CO₂ by formation of a hydrogen bond between the OH species and one of the O atoms of CO₂. For the stable adsorption configurations of CO₂ with structures of C(1), C(2) and C(3), corresponding to the co-adsorption configurations DA(1)–DA(3) in Fig. 5, the CO₂ adsorption energies are increased by 4.8, 2.9 and 8.7 kJ·mol⁻¹, respectively. Nevertheless, the adsorption energies increment of C(2) to DA(2) is smaller than that of co-adsorption with H₂O of C(2) to MA(2). For the most stable co-adsorption configuration of DA(1), this result is almost consistent with the calculation by Yin et al. [35], who found that largest binding energy is $50.7 \text{ kJ} \cdot \text{mol}^{-1}$ without solvation effect. For the adsorption configurations of CO₂ in C(4), the adsorption energy has the largest increment by $19.3 \text{ kJ} \cdot \text{mol}^{-1}$. Although the adsorption energies of CO₂ in C(1)–C(4) structures increase in varying degrees when dissociative H₂O co-exists, the most stable structure of CO₂ adsorption is still CO₂ adsorption in C(1) mode, accompanied by H₂O dissociative adsorption with DW(2).

In summary, the main effect of co-adsorption of H₂O in molecular and dissociative states on the adsorption of CO₂ on a K₂CO₃/TiO₂ sorbent is a slight increase in the stability of the CO₂ adsorption on the sorbent. Our results are consistent with Mahinpey et al. [28], who explained that the increase in adsorption energy of CO₂ is due mainly to the fact that the activated K₂CO₃·[H₂O]_{ads} basic site might have a much greater affinity for interacting with the acidic CO₂ than neutral K₂CO₃.

Among the various co-adsorption configurations, the co-adsorption of molecular H_2O or dissociative H_2O and CO_2 makes the weakest CO_2 adsorption enhance in maximum extent compared to the CO_2 adsorption alone; however, the strongest adsorption of CO_2 is still the one in C(1) whether the co-adsorption of CO_2 with molecular H_2O and dissociative H_2O or CO_2 adsorption alone.

3.4. Bicarbonate formation pathway

In our previous work, the formation of bicarbonate may have been facilitated through the "one-step mechanism" and the "two-step mechanism" [14]. Herein, we also investigated bicarbonate formation reaction through the two mechanisms.

3.4.1. Bicarbonate formation from "one-step mechanism"

Beginning with the most stable co-adsorption configurations for H_2O and CO_2 in M(2), bicarbonate formation requires a path in which the OH dissociates from the H_2O molecule and attacks the adsorbed CO_2 ; the other H in H_2O molecule transfers to the CO_3 anion. The optimized geometries of the reactant, transition state (TS) and product are shown in Fig. 6, the corresponding transition state structural parameters, reaction activation energy and reaction energy are listed in Table 4. In the transition state (TS), the H-O bond length in the adsorbed H_2O is elongated from 0.984 to 2.481 Å, and the distance

Table 2

Adsorption energies, representative geometrical parameters and the total *Mulliken* charge of a CO_2 molecule co-adsorbed with a H_2O molecule on K_2CO_3 loaded on TiO_2 (1 1 0) surface.

Configurations	r(Ti-O _c) ^a (Å)	$r(C-O_b)^b$ (Å)	r(K-O _c) ^a (Å)	r(H…O) (Å)	r(C-O) (Å)	α(OCO) (°)	$\Delta E_{\rm ads} ({\rm kJ} \cdot {\rm mol}^{-1})$	Charge (e)
M1	2.799	2.912	2.911	2.331	1.179, 1.182	177.0	- 45.3	-0.04
M2	2.096	2.991	3.417	2.743	1.176, 1.181	176.0	- 57.9	-0.05
M3	2.797, 3.027	-	-	2.371	1.180, 1.183	178.5	- 40.5	-0.05
M4	-	2.608	4.323	1.733	1.173, 1.190	174.3	- 41.5	-0.01

^a The O_c is refer to O atom of CO_2 molecule.

 $^{\rm b}\,$ The $O_{\rm b}$ is refer to a generic surface bridging O atom.

Fig. 5. Top views of the main co-adsorption configurations of CO_2 with a dissociative H_2O molecule over the K_2CO_3 loaded on TiO_2 (1 1 0) surfaces. For increased clarity, the oxygen atoms of CO_2 and H_2O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

between the C atom of CO_2 and O atom of H_2O is shortened from 2.910 to 2.108 Å. The calculated values of the activation energy and reaction energy are 146.6 and $66.6 \text{ kJ} \cdot \text{mol}^{-1}$, respectively. The activation energy is far greater than those on low-index surfaces of monoclinic and hexagonal K₂CO₃ obtained in our previous work [14], which are 19.3 to 70.4 kJ·mol⁻¹.

3.4.2. Bicarbonate formation from "two-step mechanism"

In our previous work, the "two-step mechanism" involved H_2O dissociating into OH and H, then OH attacking CO_2 to form a HCO_3 anion, and H combining with CO_3 to form HCO_3 [14]. On the TiO₂-supported K_2CO_3 sorbent, there are two areas we will take into account in this study, namely, the surface of TiO₂ (1 1 0) and the interface of K_2CO_3/TiO_2 (1 1 0). Different from pure K_2CO_3 , the H from H_2O dissociation must migrate on the sorbent of K_2CO_3/TiO_2 and then combine with a CO_3 anion to form a HCO_3 anion, rather than combining directly with CO_3 in the sorbent to form HCO_3 . Therefore, the "two-step mechanism" includes an additional process of H migration besides the aforementioned two steps, as opposed to that on a pure K_2CO_3 sorbent.

3.4.2.1. H_2O dissociation. Starting from the stable adsorption of H_2O on the surface with structures of W(1) and W(2), we have analyzed the dissociation of the H₂O molecule. The dissociated H₂O molecule leads to the formation of a terminal hydroxyl (OH_t) and a bridging hydroxyl (OH_b), as shown in DW(1) and DW(2) in Fig. 3, and the structures of the transition state are shown in Fig. 7, the corresponding transition state structural parameters, reaction activation energy and reaction energy are listed in Table 5. The resulting activation energy and reaction energy obtained from calculations using a transition searching method are 48.2 and $8.7 \text{ kJ} \cdot \text{mol}^{-1}$ from W(1) to DW(1), and 37.6 and $-13.5 \text{ kJ} \cdot \text{mol}^{-1}$ from W(2) to DW(2). The results show that H₂O dissociation at the interface of K2CO3/TiO2 has a relatively low reaction barrier and that the reaction process is exothermic, indicating that it is easy to dissociate H₂O at the interface of K₂CO₃/ TiO₂. Although H₂O dissociation on the surface of TiO₂ also has low activation energy, the reaction is endothermic. The entire process from adsorption of H₂O to dissociation into OH and H is exothermic and of a low heat entropy change. We therefore believe that H₂O is also easy to

dissociate on the surface of TiO_2 .

From the above results, one can conclude that the adsorption of H_2O in molecular states is easy to dissociate, whether H_2O adsorbed at the interface of K_2CO_3/TiO_2 or on the surface of TiO_2 . Further, because of the lower activation energy at the interface of K_2CO_3/TiO_2 compared to that on the surface of TiO_2 , one can conclude that the presence of K_2CO_3 on TiO_2 promotes the dissociation of H_2O , which is similar to the conclusion obtained by Grinter et al. [51] that a more favorable H_2O dissociation is fostered by the presence of K atoms on the surface. On the other hand, the activation energy of H_2O dissociation at the interface of K_2CO_3/TiO_2 sorbent is lower than that on pure K_2CO_3 (55.0 kJ·mol⁻¹) [14], indicating that the support TiO_2 not only facilitates K_2CO_3 dispersion, but also makes H_2O dissociation easier.

3.4.2.2. *H* proton transfer. Based on the dissociative configurations of DA(1) and DA(2), the calculated result shows that the reaction of the H proton cannot combine directly with CO_3 anions, as that on a pure K_2CO_3 sorbent. Therefore, H transfer is dispensable for the mechanism. The direct H transfer from OH_b to the O atoms of CO_3 anions is unfavorable due to the greater distance of H proton transfer. Taking into account the presence of H_2O molecules in this situation, we think that H_2O molecules can also participate in this process, as shown in Fig. 8, the corresponding transition state structural parameters, reaction activation energy and reaction energy are listed in Table 6.

The resulting activation energies and reaction energies are 54.0 and $19.3 \text{ kJ} \cdot \text{mol}^{-1}$ for DA(1) to P1 via TS2-2-1, and 59.8 and $-8.7 \text{ kJ} \cdot \text{mol}^{-1}$ for DA(2) to P2 via TS2-2-2, respectively. The calculated results confirmed that the presence of the H₂O molecule makes the H transfer possible.

3.4.2.3. OH_t reaction with CO_2 . We explored the bicarbonate formation reaction mechanism by reacting CO_2 and OH_t based on the coadsorption configuration of CO_2 and OH in DA(1) and DA(2) structures. The calculated reaction pathways of the CO_2 and OH are shown in Fig. 9, the corresponding transition state structural parameters, reaction activation energy and reaction energy are listed in Table 7, wherein the reaction refers to the OH_t attacking nearby CO_2 molecules adsorbed at the Ti site. The resulting activation energies are

Table 3

Adsorption energies, representative geometrical parameters and variation of the total *Mulliken charge* of a CO_2 molecule co-adsorbed with a dissociative H_2O molecule on K_2CO_3 loaded on TiO_2 (110) surface.

Configurations	r(Ti-O _c) ^a (Å)	$r(O_b-C)^b$ (Å)	r(K-O _c) ^a (Å)	$r(H \cdots O_c)^a$ (Å)	r(C-O) (Å)	α(OCO) (°)	$\Delta E_{\rm ads} ({\rm kJ} \cdot {\rm mol}^{-1})$	Charge (e)
DA1	2.839	2.934	2.888	2.576	1.177, 1.183	177.0	- 48.2	-0.04
DA2	2.690	3.021	3.506	2.497	1.175, 1.184	177.7	- 43.4	-0.07
DA3	3.070, 2.784	-	-	2.508	1.180, 1.182	178.6	- 40.5	-0.05
DA4	-	2.671	4.245	1.763	1.175, 1.187	175.0	- 42.5	-0.03

 a The O_c is refer to O atom of CO₂ molecule.

 $^{\rm b}~$ The $O_{\rm b}$ is refer to a generic surface bridging O atom.

44.4 and 57.9 kJ·mol⁻¹, respectively. Meanwhile, the processes are slightly exothermic, with reaction energies of -7.7 and $-28.9 \text{ kJ} \cdot \text{mol}^{-1}$. Obviously, the reaction barrier is slightly lower on the surface of TiO₂ than on the interface of K₂CO₃/TiO₂. Our calculated activation energy on the surface of TiO₂ is almost equal to that (48.2 kJ·mol⁻¹) on clean TiO_2 [35], and higher than that $(25.1 \text{ kJ} \cdot \text{mol}^{-1})$ on pure K₂CO₃ [14].

The activation energies in the above elementary reactions are similar, which leads to difficulty in judging the carbonate performance. Therefore, the microkinetic modeling for the CO₂ capture on K₂CO₃/ TiO₂ will be investigated, and the rate of bicarbonate formation is then calculated at each site.

3.5. Microkinetic modeling

For the "one-step mechanism", only reactions at the interface of K₂CO₃/TiO₂ were taken into account. The corresponding activation free energies G_a , reaction free energies ΔG and rate constant k are summarized in Table 8 (R1, R2 and R6).

Reactions (1) and (2) (R1 and R2) are presumed to represent equilibrium, with equilibrium coverages of CO2 and H2O determined as a function of partial pressures, and assuming competitive Langmuir adsorption and excluding possible other adsorbed species, such as bicarbonate.

These were calculated by the following formula:

$$\theta_{\rm H_2O} = \frac{K_{\rm H_2O}P_{\rm H_2O}}{1 + K_{\rm H_2O}P_{\rm H_2O} + K_{\rm CO_2}P_{\rm CO_2}}$$
(11)

$$\theta_{\rm CO_2} = \frac{\kappa_{\rm CO_2} r_{\rm CO_2}}{1 + K_{\rm H_2O} P_{\rm H_2O} + K_{\rm CO_2} P_{\rm CO_2}}$$
(12)

The equilibrium constants for CO2 and H2O adsorption were estimated by the formula [47]:

$$K = \exp[-(E_{ads} - T\Delta S)/k_B T]$$
(13)

where ΔS is the entropy change of gas-phase CO₂ or H₂O, which are obtained from NIST Chemistry Web Book. The reaction rate r for bicarbonate formation (R6) at each site was calculated by the following formula:

$$r_6 = k_6 \theta_{\rm H_2O} \theta_{\rm CO_2} \tag{14}$$

The Gibbs adsorption free energy, equilibrium constant of CO2 and H₂O are listed in Table 9, with all reaction conditions at 350 K; a gas mixture of $0.15 \text{ atm } CO_2$, $0.15 \text{ atm } H_2O$, and $70\% N_2$, and a total Fig. 6. The pathways for reaction of co-adsorption configurations of CO2 and H2O species M(2). For increased clarity, the oxygen atoms of OHt and H2O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

pressure of 1 atm were considered [15].

The Gibbs free energy of CO_2 adsorption is less than that of H_2O , so the CO₂ adsorption equilibrium constant is exceedingly smaller than that of H₂O. The calculated reaction rate constant k, θ_{CO_2} , θ_{H_2O} , and reaction rate are 2.06×10^{-10} s⁻¹, 8.25×10^{-8} , 0.9999 and 1.70×10^{-17} s⁻¹, respectively. The reaction rate for bicarbonate formation from M(2) is small due to the smaller reaction rate constant kand coverage of CO₂, θ_{CO_2} . This is similar to bicarbonate formation on a K₂CO₃ (001) surface obtained by Gao et al. [32], who found that the reaction rate for bicarbonate formation is small because the CO₂ adsorbed fraction is very small. We also calculated the reaction rates on the low index on pure K₂CO₃ based on our previous investigation, listed in Table 10. Obviously, the carbonation reaction has the largest reaction rate on the (001) - 1 surface of K_2CO_3 with a hexagonal structure, which is $9.39 \times 10^7 \text{ s}^{-1}$, far more than that on a K₂CO₃/TiO₂ surface. These results indicate that bicarbonate formation is not feasible at the interface of K₂CO₃/TiO₂ through the reaction with "one-step mechanism".

For the "two-step mechanism" (i.e., H₂O dissociates preceding bicarbonate formation, then proton H transfers to CO₃ anions, and OH group from the H_2O dissociation reacts with the gas molecule of CO_2), all reactions used for calculation are summarized in Table 5 (R2-R5). As OH was found in the carbonation reaction, we therefore first considered H₂O adsorption and dissociation. Reaction (2) (R2) was supposed to be equilibrium. The other step, R3, was described by the forward rate. The site balance of intermediate species included in the reaction mechanism can be written in terms of coverage (θ_X ; X = surface species) for reactions (2) and (3).

$$\theta_{\rm H_2O} + \theta_{\rm H} + \theta_{\rm HO} + \theta^* = 1 \tag{15}$$

The θ^* is the coverage of vacancy. The coverage of H₂O is calculated as follows:

$$\theta_{\mathrm{H}_{2}\mathrm{O}} = \mathrm{P}_{\mathrm{H}_{2}\mathrm{O}}\mathrm{K}_{\mathrm{H}_{2}\mathrm{O}}\theta^{*} \tag{16}$$

The $\theta_{\rm H}$ and $\theta_{\rm HO}$ can be calculated according to the formula below:

$$\theta_{\rm H} = \theta_{\rm HO} = k_3 \theta_{\rm H_2O} \theta^* \tag{17}$$

By putting Eqs. (16) and (17) into (15), we can calculate θ^* and surface coverage of other species according to the equilibrium-state approximation presented as follows:

$$P_{H_2O}K_{H_2O}\theta^* + 2k_3P_{H_2O}K_{H_2O}\theta^*\theta^* + \theta^* = 1$$
(18)

According to these equations, we can obtain the result of θ_{HO} . So the carbonation reaction (R5) rate on per site could be calculated by the

Table 4

- - -

Transition state structure parameters, activation energies E_a and reaction energies ΔE for co-adsorption CO₂ and H₂O reaction on K₂CO₃/TiO₂(110).

Configuration	r(C–O) (Å)	r(C–O) (Å)	r(H1–O _w) ^a (Å)	r(H2–O _w) ^a (Å)	r(C–O) (Å)	0-C-0 (°)	$E_{\rm a}$ (kJ·mol ⁻¹)	$\Delta E (kJ \cdot mol^{-1})$
TS1	1.202	1.221	0.981	2.481	2.108	152.3	146.6	66.6

^a The O_w is refer to O atom of H₂O molecule.

Fig. 7. The dissociation of a H_2O molecule over the K_2CO_3 loaded on TiO_2 (110) surfaces.

Table 5 Transition state structure parameters, activation energies E_a and reaction energies ΔE for H₂O dissociative on K₂CO₃/TiO₂ (1 1 0).

Configurations	r(Ti- O _w) ^a (Å)	r(O _b - H) ^b (Å)	r(K- O _w) ^a (Å)	r(O _w - H) ^a (Å)	$E_{\rm a}$ (kJ·mol ⁻¹)	$\Delta E \ (\text{kJ·mol}^{-1})$
TS2-1-1	2.240	1.417	-	1.485	48.2	8.7
TS2-1-2	2.169	1.468	3.014	1.171	37.6	-13.5

Table 6

Transition state structure parameters, activation energies $E_{\rm a}$ and reaction energies ΔE for reaction of H proton transfer reaction from OH_b group to the O atoms of CO₃ anions.

Configurations	$r(O_c-H)^a$ (Å)	$r(O_b-H)^b$ (Å)	$E_{\rm a}$ (kJ·mol ⁻¹)	$\Delta E (kJ \cdot mol^{-1})$
TS2-2-1	1.389	1.480	54.0	19.3
TS2-2-2	1.635	2.005	59.8	-8.7

 $^{\rm a}\,$ The $O_{\rm w}$ is refer to O atom of HO molecule.

DA(2)

 $^{\rm b}\,$ The $O_{\rm b}$ is refer to a generic surface bridging O atom.

^a The O_w is refer to O atom of CO_3 species.

 $^{\rm b}~$ The $O_{\rm b}$ is refer to a generic surface bridging O atom.

TS2-2-2

Fig. 8. The pathways for reaction of H proton transfer reaction from OH_b group to the O atoms of CO_3 anions. For increased clarity, the oxygen atoms of H_2O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

P2

Fig. 9. The pathways for reaction of the OH_t attacking a nearby CO₂ molecule adsorbed on K_2CO_3/TiO_2 . For increased clarity, the oxygen atoms of OH_t and H₂O are indicated in pink, and the oxygen atoms of the slab are indicated in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7

Transition state structure parameters, activation energies E_a and reaction energies ΔE for gas CO₂ and OH_t reaction on K₂CO₃/TiO₂(110).

Surfaces	r(C–O1) (Å)	r(C–O2) (Å)	r(H1–O) (Å)	$r(C-O_w)^a$ (Å)	0-C-0 ^d (°)	$E_{\rm a}$ (kJ·mol ⁻¹)	$\Delta E \ (kJ \cdot mol^{-1})$
TS2-3-1	1.204	1.226	0.967	1.958	141.5	44.4	-7.7
TS2-3-2	1.196	1.215	0.973	2.261	155.2	57.9	-28.9

^a The O_w is refer to O atom of OH_t molecule.

Table 8

The relevant elementary reactions of bicarbonate formation on the surface of TiO₂ (1 1 0) and at the interface of K₂CO₃/TiO₂ (1 1 0) together with the corresponding activation free energies G_a (kJ-mol⁻¹), reaction free energies ΔG (kJ-mol⁻¹) and rate constant k (s⁻¹) at 350 K.

Elementary reactions		On the surface	On the surface			At the interface		
		Ga	ΔG	k	Ga	ΔG	k	
R1	$\mathrm{CO}_2(g) + \ast \leftrightarrow \mathrm{CO}_2^\ast$	-	-	-	-	-	-	
R2	$H_2O(g) + * \leftrightarrow H_2O^*$	-	-	-	-	-	-	
R3	$H_2O^* + * \xrightarrow{k_3} HO^* + H^*$	46.4	6.8	$6.33 imes 10^5$	18.3	-14.7	$6.89 imes 10^9$	
R4	$H^* + CO_3^* \xrightarrow{k_4} HCO_3^*$	53.3	17.5	$1.04 imes 10^5$	62.8	-10.5	$1.12 imes 10^3$	
R5	$HO^* + CO_2(g) \xrightarrow{k_5} HCO_3^*$	27.7	-7.4	$4.92 imes 10^8$	37.4	-24.5	$3.54 imes 10^7$	
R6	$\text{CO}_2^* + \text{H}_2\text{O}^* \xrightarrow{k_6} \text{HCO}_3^* + \text{H}^*$	-	-	-	148.8	68.8	2.06×10^{-10}	

Table 9

The Gibbs adsorption free energy (kJ·mol $^{-1}$) and equilibrium constant of CO₂ and H₂O adsorption on the K₂CO₃/TiO₂ sorbent at 350 K.

Adsorbates	Free energy of adsorption	Equilibrium constant
C(1)	-31.7	3.78×10^{5}
C(2)	-30.4	2.88×10^{5}
W(1)	- 70.6	6.15×10^{10}
W(2)	- 80.5	3.49×10^{12}

following formula:

$$r_5 = k_5 \theta_{\rm HO} P_{\rm CO_2} \tag{19}$$

The calculated $\theta_{\rm H_2O}$, $\theta_{\rm H}$ and $\theta_{\rm HO}$ are 9.96 × 10⁻¹, 6.81 × 10⁻⁵ and 6.82 × 10⁻⁵ on the surface of TiO₂ (1 1 0), respectively, while they are

9.74 × 10⁻¹, 1.25 × 10⁻² and 1.25 × 10⁻² at the interface of K₂CO₃/TiO₂(1 1 0). Next, the reaction rate for H₂O dissociation and bicarbonate formation (H transfer and OH group reacting with the gas molecule of CO₂) are calculated by $r_3 = k_3 \theta_{H_2O} \theta^*$, $r_4 = k_4 \theta_H$ and $r_5 = k_5 \theta_{OH} P_{CO_2}$; the corresponding values are 6.81 × 10⁻⁵, 7.08 and 5.03 × 10³ s⁻¹ on the surface of TiO₂ (1 1 0), and 1.25 × 10⁻², 1.40 × 10¹ and 6.64 × 10⁴ s⁻¹ at the interface of K₂CO₃/TiO₂ (1 1 0), respectively.

Obviously, the bicarbonate formation reaction rates of R6 are much lower than those of R4 and R5; therefore, it is impossible for bicarbonate formation through the "one-step mechanism". In our previous work [14] on pure K_2CO_3 , the carbonation reaction occurs through both the "one-step mechanism" and "two-step mechanism". Certainly, the mechanism is different from that on pure K_2CO_3 when TiO₂ support exists. It is noted that the step of H transfer appears in the "two-step

Table 10

The equilibrium constant and coverage of CO_2 and H_2O adsorption, rate constant *k* and reaction rate*r* for CO_2 and H_2O reaction on the monoclinic and hexagonal K_2CO_3 each surfaces through "one-step mechanism", respectively (T = 350 K).

Surfaces		$k_6 (s^{-1})$	K _{CO2}	K _{H2O}	$\theta_{\rm CO_2}$	$\theta_{\rm H_2O}$	$r_6 (s^{-1})$
Monoclinic	(001) (011) (100) (111) (101) (110)	$2.65 imes 10^9$ $3.15 imes 10^5$ $4.81 imes 10^{10}$ $2.89 imes 10^7$ $2.83 imes 10^6$ $1.54 imes 10^9$	3.53×10^{6} 1.28×10^{6} 4.55×10^{7} 1.59×10^{12} 1.12×10^{7} 1.89×10^{5}	$\begin{array}{c} 2.39 \times 10^{15} \\ 9.69 \times 10^{10} \\ 2.49 \times 10^{13} \\ 7.98 \times 10^{15} \\ 1.19 \times 10^{16} \\ 3.71 \times 10^{10} \end{array}$	$\begin{array}{c} 1.48 \times 10^{-9} \\ 1.32 \times 10^{-5} \\ 1.83 \times 10^{-6} \\ 1.99 \times 10^{-4} \\ 9.43 \times 10^{-10} \\ 5.11 \times 10^{-6} \end{array}$	$egin{array}{c} 1.00 imes 10^0 \ 1.00 imes 10^0 \end{array}$	$\begin{array}{c} 3.92 \times 10^{0} \\ 4.15 \times 10^{0} \\ 8.79 \times 10^{4} \\ 5.76 \times 10^{3} \\ 2.67 \times 10^{-3} \\ 7.85 \times 10^{3} \end{array}$
Hexagonal	(110)(010)(111)(011)(110)(001)-1(001)-2(010)	$\begin{array}{c} 1.34\times10^8\\ 3.86\times10^8\\ 1.52\times10^8\\ 3.58\times10^9\\ 7.82\times10^9\\ 5.41\times10^8\\ 4.02\times10^8\\ 3.67\times10^8\end{array}$	$\begin{array}{c} 1.69 \times 10^{7} \\ 5.91 \times 10^{7} \\ 4.05 \times 10^{5} \\ 4.41 \times 10^{6} \\ 5.76 \times 10^{3} \\ 9.67 \times 10^{10} \\ 5.09 \times 10^{3} \\ 2.21 \times 10^{7} \end{array}$	$\begin{array}{c} 3.71 \times 10 \\ 4.92 \times 10^{16} \\ 1.06 \times 10^{14} \\ 1.20 \times 10^{12} \\ 3.51 \times 10^{11} \\ 3.36 \times 10^{11} \\ 1.46 \times 10^{10} \\ 2.18 \times 10^{11} \end{array}$	3.11×10^{-9} 3.83×10^{-9} 3.67×10^{-6} 1.64×10^{-8} 2.23×10^{-1} 3.48×10^{-7} 1.01×10^{-4}	$\begin{array}{c} 1.00 \times 10^{0} \\ 1.00 \times 10^{0} \\ 9.99 \times 10^{-1} \\ 1.00 \times 10^{0} \\ 7.77 \times 10^{-1} \\ 1.00 \times 10^{0} \\ 1.00 \times 10^{0} \end{array}$	$\begin{array}{c} 7.63 \times 10^{-1} \\ 4.64 \times 10^{-1} \\ 5.81 \times 10^{-1} \\ 1.31 \times 10^{4} \\ 1.28 \times 10^{2} \\ 9.39 \times 10^{7} \\ 1.40 \times 10^{2} \\ 3.72 \times 10^{4} \end{array}$

Table 11

The equilibrium constant and coverage of H₂O adsorption, coverage of OH group, rate constant and reaction rate for H₂O dissociation r_3 as well as CO₂ and HO reaction r_5 on the monoclinic and hexagonal K₂CO₃ each surfaces through "two-step mechanism", respectively (T = 350 K).

Surfaces		$k_3 (s^{-1})$	$k_5 (s^{-1})$	$\mathrm{K}_{\mathrm{H}_{2}\mathrm{O}}$	$\theta_{\rm H_2O}$	$ heta_{ m HO}$	$r_3 (s^{-1})$	$r_5 (s^{-1})$
Monoclinic	(001) (011)	$\begin{array}{c} 2.17 \times 10^{-10} \\ 5.56 \times 10^{-6} \end{array}$	$\begin{array}{c} 8.89 \times 10^{11} \\ 2.25 \times 10^{13} \end{array}$	$\begin{array}{c} 2.39 \times 10^{15} \\ 9.69 \times 10^{10} \end{array}$	1.00 1.00	$\begin{array}{c} 6.06 \times 10^{-25} \\ 3.83 \times 10^{-16} \end{array}$	$\begin{array}{c} 6.06 \times 10^{-25} \\ 3.83 \times 10^{-16} \end{array}$	$\begin{array}{c} 8.08 \times 10^{-14} \\ 1.29 \times 10^{-3} \end{array}$
Hexagonal	(010)	$2.38 imes 10^4$	$2.31 imes 10^{10}$	2.18×10^{11}	1.00	7.28×10^{-7}	7.28×10^{-7}	$2.52 imes 10^3$

mechanism" over TiO₂ supported K_2CO_3 sorbent compared to that on pure K_2CO_3 sorbent, where H dissociated from H₂O, need not transfer but directly bonds to CO₃ to form HCO₃. On the other hand, the reaction rates of R3, R4 and R5 are comparable to each other at the interface of K_2CO_3/TiO_2 or on the surface of TiO₂, and the rate-determining steps are likely governed by reaction step R3, i.e., the H₂O dissociation process is the rate-determining step of the carbonation reaction. Mahinpey et al. [28] proposed an initial rate-determining step is H₂O adsorption step, and the reaction mechanism follows below equations:

$$K_2CO_3 (s) + H_2 O (g) \Leftrightarrow K_2 CO_3 [H_2 O]_{ads}$$

$$(20)$$

$$K_2CO_3 [H_2O]_{ads} + CO_2 (g) \Leftrightarrow 2KHCO_3 (s)$$
(21)

However, the detailed reaction is still not clarified about K_2CO_3 ·[H₂O]_{ads} reacting with CO₂. Herein, we proposed that the mechanism is (1) chemisorbed H₂O is dissociated into OH and H, then (2) OH is combined with physisorbed CO₂ into HCO₃ on the K₂CO₃/TiO₂ sorbent, and at the time, H is transferred through the surface and combined with CO₃ from K₂CO₃ into HCO₃. Furthermore, the values of reaction rates at the interface are about 3 orders of magnitude higher than the corresponding values on the surface, which indicates that the interface of K₂CO₃/TiO₂ offers better active sites for CO₂ capture. When K₂CO₃ is supported on TiO₂ (1 1 0), the carbonation reaction is accelerated compared to that on a pure K₂CO₃ surface under real reaction conditions (the reaction rate on pure K₂CO₃ is listed in Table 11). Obviously, the addition of a TiO₂ support promotes the dissociation of the H₂O molecule, which makes the carbonation reaction accelerate, compared to the pure K₂CO₃ surface.

Although the addition of a TiO₂ support promotes the dissociation of H₂O, the overall reaction rate is still not increased. Because H₂O dissociation is the rate-determining step, according to our kinetic modeling, accelerating the dissociation of H₂O will further increase the coverage of OH, thus strengthening the capture ability of K₂CO₃/TiO₂ to CO₂. The suggestion may be confirmed by the following experiments. For example, TiO(OH)₂ has been reported as a great catalytic support for CO₂ capture leading to a significant increase of CO₂ sorption capacity per unit of K₂CO₃ by a factor of about 37 [24]. Furthermore, this group confirmed that TiO(OH)₂/tetraethylenepentamine is a good sorbent for CO₂ capture [25]. In the real application, it is proposed that adding promote to the K_2CO_3/TiO_2 sorbent which can improve the dissociation rate of H₂O, or pretreating the K_2CO_3/TiO_2 sorbent to create more OH on the surface of the sorbent so that it is accelerated for CO₂ capture.

4. Conclusions

The capture of CO₂ using K₂CO₃ loaded on rutile of TiO₂ has been studied using corrected DFT slab calculations. The active sites of CO₂ and H₂O adsorption as well as the detail mechanism of CO₂ capture by K_2CO_3/TiO_2 (1 1 0), are present. The results show that, over the K_2CO_3 supported on a (4 \times 2) TiO₂ (110) surface, CO₂ and H₂O prefer to adsorb at the interface between the TiO₂ and K₂CO₃. Meanwhile, their adsorptions are weaker than those on pure K₂CO₃. The H₂O, as well as co-adsorbed OH and H species, bind much more strongly than does the CO2 molecule. Further, co-adsorbed H2O, as well as OH and H species, can slightly increase the adsorption ability of the CO₂ molecule on the sorbent, which is similar to the previous research on CO2 and H2O adsorbed on pure K2CO3 surfaces and pure TiO2 surfaces. The carbonation reaction is processed not via a "one-step mechanism" but via a "two-step mechanism", i.e., the adsorbed H₂O molecule dissociates to form OH_t adsorbed at the top Ti site and H_b species adsorbed at the bridging of the O site. The CO₃ anion then deprives the transferred H_b group, at the same time, the gas CO2 molecule reacts with the OHt group, leading to the production of the bicarbonate group. More importantly, the reaction prefers to occur at the interface of K₂CO₃/TiO₂. and H transfer step is added when K₂CO₃ is loaded on the support TiO₂ compared that on pure K₂CO₃.

The kinetic modeling results show that the carbonation reaction is governed by H_2O dissociation. The dissociation of H_2O may limit the carbonation reaction. Therefore, either H_2O -dissociative or high OH coverage support material should be the most promising candidates for maximizing the carbonation performance of a K_2CO_3 -based solid sorbent in practice.

Acknowledgments

This work was supported financially by Key Projects of National Natural Science Foundation of China (21736007), the National Natural Science Foundation of China (Nos. 21506120 and 21576178).

References

- Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009;458:1163–6.
- [2] Aaron D, Tsouris C. Separation of CO₂ from flue gas: a review. Sep Sci Technol 2005;40:321–48.
- [3] Wilson M, Tontiwachwuthikul P, Chakma A, Idem R, Veawab A, Aroomwilas A, et al. Test results from a CO₂ extraction pilot plant at boundary dam coal-fired power station. Energy 2004;29:1259–67.
- [4] Freund P, Ormerod WG. Progress toward storage of carbon dioxide. Energy Convers Manage 1997;38:S199–204.
- [5] Mavroudi M, Kaldis SP, Sakellaropoulos GP. Reduction of CO₂ emissions by a membrane contacting process. Fuel 2003;82:2153–9.
- [6] Zhang X, Zhang X, Liu H, Li W, Xiao M, Gao H, et al. Reduction of energy requirement of CO₂ desorption from a rich CO₂-loaded MEA solution by using solid acid catalysts. Appl Energ 2017;202:673–84.
- [7] Cheng C, Li K, Yu H, Jiang K, Chen J, Feron P. Amine-based post-combustion CO₂ capture mediated by metal ions: advancement of CO₂ desorption using copper ions. Appl Energ 2018;211:1030–8.
- [8] Chen SJ, Zhu M, Fu Y, Huang YX, Tao ZC, Li WL. Using 13X, LiX, and LiPdAgX zeolites for CO₂ capture from post-combustion flue gas. Appl Energ 2017;191:87–98.
- [9] Khelifa A, Benchehida L, Derriche Z. Adsorption of carbon dioxide by X zeolites exchanged with Ni²⁺ and Cr³⁺: isotherms and isosteric heat. J Colloid Interface Sci 2004;278:9–17.
- [10] Yi CK, Jo SH, Seo Y, Park SD, Moon KH, Yoo JS, et al. CO₂ capture characteristics of dry sorbents in a fast fluidized reactor. Stud Surf Sci Catal 2006;159:501–4.
- [11] Lee SC, Choi BY, Lee SJ, Jung SY, Chong KR. CO₂ absorption and regeneration using Na and K based sorbents. Stud Surf Sci Catal 2004;153:527–30.
- [12] Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ. Enhancement of CO₂ sorption uptake on hydrotalcite by impregnation with K₂CO₃. Lagmuir 2010;26:18788–97.
- [14] Liu H, Qin Q, Zhang R, Ling L, Wang B. Insight into the mechanism of the capture of CO₂ by K₂CO₃ sorbent: a DFT study. Phys Chem Chem Phys 2017;19:24357–68.
- [15] Lee SC, Choi BY, Lee TJ, Kim JC. CO₂ absorption and regeneration of alkali metalbased solid sorbents. Catal Today 2006;111:385–90.
- [16] Lee SC, Kim JC. Dry potassium-based sorbents for CO₂ capture. Catal Surv Asia 2007;11:171–85.
- [17] Lee SC, Chae HJ, Lee SJ, Kim JC. Novel regenerable potassium-based dry sorbents for CO₂ capture at low temperatures. J Mol Catal B-Enzym 2009;56:179–84.
- [18] Lee SC, Chae HJ, Kwon YM, Kim JC. Characteristics of new potassium-based sorbents prepared with nano-titanium oxide for carbon dioxide capture. J Nanoelectron Optoe 2010;5:212–7.
- [19] Guo Y, Zhao C, Li C, Lu S. Application of PEI-K₂CO₃/AC for capturing CO₂ from flue gas after combustion. Appl Energ 2014;129:17–24.
- [20] Zhao C, Chen X, Zhao C. Carbonation behavior of K₂CO₃ with different microstructure used as an active component of dry sorbents for CO₂ capture. Ind Eng Chem Res 2010;49:12212–6.
- [21] Li L, Li Y, Wen X, Sun Y. CO₂ capture over K₂CO₃/MgO/Al₂O₃ dry sorbent in a fluidized bed. Energy Fuel 2011;25:3835–42.
- [22] Zhao C, Chen X, Zhao C. K₂CO₃/Al₂O₃ for capturing CO₂ in flue gas from power plants. Part 1: carbonation behaviors of K₂CO₃/Al₂O₃. Energy Fuel 2012;26:1401–5.
- [23] Lee SC, Kwon YM, Park YH, Lee WS, Park JJ, Ryu CK, et al. Structure effects of potassium-based TiO₂ sorbents on the CO₂ capture capacity. Top Catal 2010;53:641–7.
- [24] Tuwati A, Fan M, Russell AG, Wang J, Dacosta HFM. New CO₂ sorbent synthesized with nanoporous TiO(OH)₂ and K₂CO₃. Energy Fuel 2013;27:7628–36.
- [25] Irani M, Gasem K, Ditcher B, Fan M. CO₂ capture using nanoporous TiO(OH)₂ /tetraethylenepentamine. Fuel 2016;183:601–8.
- [26] Lai Q, Toan1 S, Assiri MA, Cheng H, Russell AG, Adidharma H, Radosz M, Fan M. Catalyst-TiO(OH)₂ could drastically reduce the energy consumption of CO₂ capture. Nat Commun 2018;9:2672.
- [27] Jayakumar A, Gomez A, Mahinpey N. Post-combustion CO₂ capture using solid K₂CO₃: discovering the carbonation reaction mechanism. Appl Energ 2016;179:531–43.
- $\ensuremath{[28]}$ Jayakumar A, Gomez A, Mahinpey N. Kinetic behavior of solid $\ensuremath{\mathsf{K}_2\mathsf{CO}_3}$ under

postcombustion CO₂ capture conditions. Ind Eng Chem Res 2017;56:853–63.

- [29] Zhao CW, Chen XP, Zhao CS. Carbonation and active-component-distribution behaviors of several potassium-based sorbents. Ind Eng Chem Res 2011;50:4464–70.
- [30] Lee S, Chae H, Choi B, Jung S, Ryu C, Park J, et al. The effect of relative humidity on CO₂ capture capacity of potassium-based sorbents. Korean J Chem Eng 2010;28:480–6.
- [31] Zhao W, Sprachmann G, Li Z, Cai N. Zhang X. Effect of K₂CO₃·1.5H₂O on the regeneration energy consumption of potassium-based sorbents for CO₂ capture. Appl Energ 2013;112:381–7.
- [32] Gao H, Pishney S, Janik MJ. First principles study on the adsorption of CO₂ and H₂O on the K₂CO₃ (001) surface. Sur Sci 2013;609:140–6.
- [33] Zhao W, Wu Y, Cai T, Zhang W, Chen X, Liu D. Density functional theory and reactive dynamics study of catalytic performance of TiO₂ on CO₂ desorption process with KHCO₃/TiO₂/Al₂O₃ sorbent. Mol Catal 2017;439:143–54.
- [34] Sorescu DC, Lee J, Al-Saidi WA, Jordan KD. Coadsorption properties of CO₂ and H₂O on TiO₂ rutile (110): a dispersion-corrected DFT study. J Chem Phys 2012;137:074704.
- [35] Yin W, Krack M, Wen B, Ma S, Liu L. CO₂ capture and conversion on rutile TiO₂(110) in the water environment: insight by first-principles calculations. J Phys Chem Lett 2015;6:2538–45.
- [36] Yin W, Wen B, Bandaru S, Krack M, Lau M, Liu L. The effect of excess electron and hole on CO₂ adsorption and activation on rutile (110) surface. Sci Rep 2016;6:23298.
- [37] Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, et al. First principles methods using CASTEP. Z Kristallogr 2005;220:567–70.
- [38] Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, et al. Firstprinciples simulation: ideas, illustrations and the CASTEP code. Phys: Condens Mat 2002;14:2717–44.
- [39] Karlsen EJ, Nygren MA, Pettersson LGM. Comparative study on structures and energetics of NO_x, SO_x, and CO_x adsorption on alkaline-earth-metal oxides. J Phys Chem B 2003;107:7795–802.
- [40] Schneider WF. Qualitative differences in the adsorption chemistry of acidic (CO₂, SO_x) and amphiphilic (NO_x) species on the alkaline earth oxides. J Phys Chem B 2004;108:273–82.
- [41] Hong QJ, Liu ZP. Mechanism of CO₂ hydrogenation over Cu/ZrO₂ (212) interface from first-principles kinetics monte carlo simulations. Surf Sci 2010;604:1869–76.
- [42] Wu D, Jiang W, Liu X, Xue Y. Theoretical study about effects of H₂O and Na⁺ on adsorption of CO₂ on kaolinite surfaces. Chem Res Chin U 2016;32:118–26.
 [43] Kurth S. Perdew JP. Blaha P. Molecular and solid-state tests of density functional
- [43] Kurth S, Perdew JP, Blaha P. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int J Quant Chem 1999;75:889–909.
 [44] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion cor-
- rected density functional theory. J Comput Chem 2011;32:1456–65. [45] Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B
- [15] MOMANDIST TIJ, FACK 3D, Special points for brindulin-zone integrations. Phys Rev B 1976;13:5188–92.
- [46] Cao XM, Burch R, Hardacre C, Hu P. An understanding of chemoselective hydrogenation on crotonaldehyde over Pt (111) in the free energy landscape: the microkinetics study based on first-principles calculations. Catal Today 2011;165:71–9.
- [47] Choi YM, Liu P. Mechanism of ethanol synthesis from syngas on Rh (111). J Am Chem Soc 2009;131:13054–61.
- [48] Ramamoorthy M, King-Smith RD, Vanderbilt D. First-principles calculations of the energetics of stoichiometric TiO₂ surfaces. Phys Rev B 1994;49:7709.
- [49] Henrich VE, Cox PA, Diebold U. The surface science of metal oxides: the surface science of metal oxides. Cambridge University Press; 1994. 138–138.
 [50] Baltrusaitis J, Jensen JH, Grassian VH. FTIR spectroscopy combined with isotope
- [50] Baltrusaitis J, Jensen JH, Grassian VH. FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe₂O₃ and Al₂O₃. J Phys Chem B 2006;110:12005–16.
- [51] Grinter DC, Remesal EP, Luo S, Evans J, Senanayake SD, Stacchiola DJ, et al. Potassium and water coadsorption on TiO2 (110): OH-induced anchoring of potassium and the generation of single-site catalysts. J Phys Chem Lett 2016;7:3866–72.
- [52] Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO₂ capture using solid sorbents: a review. Ind Eng Chem Res 2012;51:1438–63.
- [53] Bandura AV, Sykes DG, Shapovalov V, Troung TN, Kubicki JD, Evarestov RA. Adsorption of water on the TiO₂ (rutile) (110) surface: a comparison of periodic and embedded cluster calculations. J Phys Chem B 2004;108:7844–53.
- [54] Sahoo SK, Nigam S, Sarkar P, Majumder C. DFT study of H₂O adsorption on TiO₂ (110) and SnO₂ (110) surfaces. AIP Conf Proc 2013;1512:292–3.
- [55] Perron H, Vandenborre J, Domain C, Drot R, Roques J, Simoni E, et al. Combined investigation of water sorption on TiO₂ rutile (110) single crystal face: XPS vs. periodic DFT. Surf Sci 2007;601:518–27.
- [56] Sebbari K, Domain C, Roques J, Perron H, Simoni E, Catalette H. Investigation of hydrogen bonds and temperature effects on the water monolayer adsorption on rutile TiO₂ (110) by first-principles molecular dynamics simulations. Surf Sci 2011;605:1275–80.
- [57] Henderson MA. Evidence for bicarbonate formation on vacuum annealed TiO₂ (110) resulting from a precursor-mediated interaction between CO₂ and H₂O. Surf Sci 1998;400:203–19.