Contents lists available at ScienceDirect

# Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

# $C_2H_2$ semi-hydrogenation over the supported Pd and Cu catalysts: The effects of the support types, properties and metal-support interaction on $C_2H_4$ selectivity and activity



Applied Surface Scienc

# Zun Guan<sup>a</sup>, Mifeng Xue<sup>a</sup>, Zhiqin Li<sup>b</sup>, Riguang Zhang<sup>a,\*</sup>, Baojun Wang<sup>a</sup>

<sup>a</sup> Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China <sup>b</sup> College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi, PR China

#### ARTICLE INFO

Keywords: C<sub>2</sub>H<sub>2</sub> semi-hydrogenation Support Metal-support interaction Catalytic performance Density functional theory

# ABSTRACT

Aiming at identifying the effects of the support types, properties and the metal-support interaction of the supported catalysts on  $C_2H_4$  selectivity and its formation activity for  $C_2H_2$  semi-hydrogenation, the corresponding mechanism over the supported Pd and Cu catalysts with different supports are fully studied based on DFT calculations. This work indicates that the support types and properties change the selectivity of  $C_2H_4$  and its formation activity, for the supported Pd catalysts, the oxygen-vacancy anatase and rutile TiO<sub>2</sub> supports present much better selectivity of  $C_2H_4$  and its formation activity than the pure Pd catalyst does; especially, the anatase exhibits better catalytic performance than the rutile, in which the oxygen-vacancy show the crucial function. For the supported Cu catalysts,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> is unable to enhance  $C_2H_4$  selectivity compared to the pure Cu catalyst, whereas MgO support improves  $C_2H_4$  selectivity but reduces its formation activity. Further, the metal-support interaction of the supported Pd catalysts are much stronger than that of the supported Cu catalyst, which results in better activity and selectivity of  $C_2H_4$  over the supported Pd catalysts. This study can give out a valuable clue for the preparation of the supported Pd or Cu catalysts with better performance in  $C_2H_2$  semi-hydrogenation.

## 1. Introduction

Removal of  $C_2H_2$  from  $C_2H_4$  feeds by the reaction of  $C_2H_2$  semihydrogenating is thought to be crucial petrochemical processes [1–5]. The most commonly used catalyst in this reaction is the supported expensive metal Pd-based catalysts because of its high catalytic activity toward  $C_2H_4$  formation [5–7]. Nevertheless,  $C_2H_2$  and  $C_2H_4$  are easy to be over-hydrogenated to ethane [1,8–10]. Thus, the metal promoters such as Au [11–13], Ag [8,14–16] or Cu [10,17–18] were added into the Pd catalyst to improve  $C_2H_4$  selectivity. Nowadays, Cu-based catalysts also exhibited higher  $C_2H_4$  selectivity in  $C_2H_2$  semi-hydrogenation at a high temperature (> 473 K) [18–24]. For instance, Pd-doped Cubased catalysts with the ratio of Cu: Pd of 50: 1 exhibits better selectivity of  $C_2H_4$  and its formation activity in  $C_2H_2$  semi-hydrogenation [21]. Kyriakou et al. [25] observed that the individual Pd atom doped into Cu(1 1 1) surface presents much better  $C_2H_4$  selectivity than the pure Cu or Pd does.

The supported catalysts exhibit unusual catalytic properties and greatly affect heterogeneous catalytic reactions [26–28]. For instance, for the Pt NPs supported over the metal oxides with the strong metal-

support interaction [29], in which the low-coordinated active centers of small Pt NPs exhibited better catalytic activity than the pure Pt for water-gas shift reaction and ethanol steam reforming reaction. In comparison with the unsupported Rh catalyst, the supported Rh/TiO<sub>2</sub> catalyst [30] promotes the formation of CH<sub>3</sub> species in syngas conversion instead of methanol. Further, the catalytic performance of the supported catalysts is closely related to the kinds of oxide support. Kattel et al. [29] investigated the mechanisms of CO<sub>2</sub> conversion by hydrogen over the supported Pd/TiO<sub>2</sub> and Pd/SiO<sub>2</sub> catalysts, indicating that TiO<sub>2</sub> support exhibits higher activity and selectivity toward CH<sub>4</sub> than SiO<sub>2</sub> support. Lalik et al [31] investigated the hydrogen and oxygen recombination reaction over the Pd-Au/SiO<sub>2</sub> and Pd-Au/Al<sub>2</sub>O<sub>3</sub> catalysts, indicating that SiO2 support exhibits higher catalytic activity and stability than Al<sub>2</sub>O<sub>3</sub> support. Compared to Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub> and TiO<sub>2</sub> supports, MgO supported Fe-Co-Ni catalyst shows better catalytic performance for light olefins production in CO hydrogenation [32]. As for methane partial oxidation, Wang et al. [33] experimentally found that surface carbon was formed on Rh/SiO2 catalyst; in contrast, no carbon deposition occurred on Rh/MgO catalyst, which is mainly determined by the high stability of Rh/MgO catalyst with the stronger metal-

https://doi.org/10.1016/j.apsusc.2019.144142

Received 20 July 2019; Received in revised form 19 September 2019; Accepted 20 September 2019 Available online 18 October 2019

0169-4332/ © 2019 Elsevier B.V. All rights reserved.



<sup>\*</sup> Corresponding author.

E-mail address: zhangriguang@tyut.edu.cn (R. Zhang).

support interaction.

For the metal oxide support, the properties such as crystalline phase and oxygen vacancy also affect the catalytic performance. Firstly, for the crystalline phase, Al<sub>2</sub>O<sub>3</sub> has different crystalline phases due to the different preparation methods, the physical and chemical properties of Al<sub>2</sub>O<sub>3</sub> changed when the crystalline phase is different [34-37]. Komhom et al. [36] experimentally found the effect of mixed phase  $Al_2O_3$  ( $\alpha$ -,  $\gamma$ -,  $\theta$ -) supported Pd catalysts with different  $\alpha$ -phase content (0, 14, 47, 64, 100%) on C<sub>2</sub>H<sub>2</sub> semi-hydrogenation, indicating that the proportion of  $\alpha$ -phase reached 64%, C<sub>2</sub>H<sub>2</sub> conversion and C<sub>2</sub>H<sub>4</sub> selectivity increased significantly; the transition phase ( $\gamma$ -,  $\theta$ -) accounted for about 36% increase the specific surface area, and improve the dispersion of Pd leading to good stability. Lambert et al. [37] experimentally indicated that Pd/y-Al<sub>2</sub>O<sub>3</sub> catalyst reached the highest C<sub>2</sub>H<sub>4</sub> selectivity (85%) at 200°C in C2H2 semi-hydrogenation, but C2H2 conversion was low (76%). For the TiO<sub>2</sub> support, Li et al. [38] found the strong metal-support interaction over the Pd catalyst supported by the anatase TiO<sub>2</sub>, but not available for the Pd catalyst supported by the rutile TiO<sub>2</sub> at low temperature. Yang et al. [39] obtained higher selectivity of C2H4 and its formation activity for C2H2 semi-hydrogenation over the anatase TiO<sub>2</sub> supported Pd catalyst than that over the rutile TiO<sub>2</sub> support. On the other hand, for the oxygen-vacancy over the metal oxide supports, a large number of experimental studies suggested that the presence of oxygen-vacancy affects its catalytic performance by altering the metal-support interaction. As for CO oxidation, Wan et al. [40] prepared a single atomic site Au supported on the oxygen-vacancy TiO<sub>2</sub>, and found that the oxygen-vacancy not only effectively stabilize Au atoms by forming the Ti-Au-Ti structure, but also promote the catalytic activity. Yang et al. [41] found that the interaction between the oxygen-vacancy anatase TiO<sub>2</sub>(101) and Pd<sub>4</sub> cluster was much stronger than that between the perfect anatase TiO2 and Pd4 cluster, as a result, the oxygen-vacancy surface presents excellent activity for C<sub>2</sub>H<sub>2</sub> semihydrogenation to form C<sub>2</sub>H<sub>4</sub>. Liu et al. [42] found that the metal-support interaction between Ni<sub>4</sub> and oxygen-vacancy MgO is much stronger than that between Ni4 and perfect MgO, thus, the oxygen-vacancy Ni<sub>4</sub>/MgO catalyst exhibits better activity toward CH<sub>4</sub> dissociation.

Yet, the mechanism of  $C_2H_2$  semi-hydrogenation occurred over the metal oxides supported Pd and Cu catalysts are very limited so far, the effects of the support types, properties and metal-support interaction on the catalytic activity and selectivity of  $C_2H_2$  semi-hydrogenation are still unclear. Thus, this work aims at elucidating the effects of the support types and properties on the selectivity of  $C_2H_4$  and its formation activity,  $C_2H_2$  semi-hydrogenation reactions over the supported Pd and Cu catalysts with different kinds of metal oxide supports were examined using density functional theory (DFT) calculations; then, the effect of metal-support interaction on the catalytic performance of the supported Pd and Cu catalysts toward  $C_2H_2$  semi-hydrogenation is identified. The results are expected to provide some information about the support interaction for the experimental preparation of the supported catalysts with better-performance in  $C_2H_2$  semi-hydrogenation.

### 2. Calculation methods and models

#### 2.1. Calculation methods

In this study, all calculations are performed using Dmol<sup>3</sup> package [43,44], the GGA-PBE functional is used to describe exchange-correlation effects [45,46]. For the electron treatment, all electron is used for non-metal, while ECP [47] is used for metal atoms. A double-numerical basis with polarization functions (DNP) [48] is used for the valence electron functions. The complete LST/QST method [49,50] is performed to identify the transition states (TS). Meanwhile, TS confirmation together with frequency analysis is chosen to confirm the TS structure.

On the other hand, extensive researches [21,51,52] have

demonstrated that the reaction conditions such as high temperature and high ratio of  $H_2/C_2H_2$  can inhibit  $C_2H_2$  polymerization to form green oil. Moreover,  $C_2H_2$  semi-hydrogenation over Cu-based catalysts requires higher temperature [20,22]. Further, this study focuses on investigating the effects of the support types and properties on the activity and selectivity of the supported Pd and Cu catalysts in  $C_2H_2$  semihydrogenation. Taking above analysis into consideration, the high  $H_2/$  $C_2H_2$  ratio and temperature are set to be 10 and 520 K is set to ignore the effect of  $C_2H_2$  polymerization, and this work only examined  $C_2H_2$ semi-hydrogenation on the supported Pd and Cu catalysts. Considering the realistic reaction conditions,  $H_2$ ,  $C_2H_2$  and  $C_2H_4$  partial pressures are set to be 0.1, 0.01 and 0.89, respectively [23,24].

The adsorption free energies  $(G_{ads})$  are defined using the following equation:

$$G_{ads} = E_{total} + G_{total} - (E_{adsorbate} + G_{adsorbate} + E_{catalyst} + G_{catalyst})$$
(1)

where  $E_{\text{total}}$ ,  $E_{\text{adsorbate}}$  and  $E_{\text{catalyst}}$  represent the energies of the system after adsorption, the adsorbent in the gas state and the supported catalyst, respectively.  $G_{\text{total}}$ ,  $G_{\text{adsorbate}}$  and  $G_{\text{catalyst}}$  correspond to the Gibbs free energies at 520 K.

The interaction energies between the metal and the support,  $E_{int}$ , are calculated as follows:

$$E_{\text{int}} = E(\text{total}) - E(\text{metal'}) - E(\text{support'})$$
<sup>(2)</sup>

where the *E*(metal') denotes the total energy of Pd or Cu clusters supported on different supports, and the *E*(support') represents the total energy of deformed support obtained after Pd or Cu cluster adsorption.

The activation free energy ( $\Delta G_a$ ) and reaction free energy ( $\Delta G$ ) are calculated on the basis of following equations:

$$\Delta G_{\rm a} = (E_{\rm TS} + G_{\rm TS}) - (E_{\rm R} + G_{\rm R}) \tag{3}$$

$$\Delta G = (E_{\rm P} + G_{\rm P}) - (E_{\rm R} + G_{\rm R}) \tag{4}$$

where  $E_{\rm R}$ ,  $E_{\rm TS}$ , and  $E_{\rm P}$  correspond to the energies of reactants, transition states and products, respectively; the corresponding Gibbs free energies are represented by  $G_{\rm R}$ ,  $G_{\rm TS}$  and  $G_{\rm P}$ , respectively.

### 2.2. Computational models

In this study, the moderate size  $Pd_{38}(Cu_{38})$  cluster is used as the active component of the supported catalysts, the outer shell Pd(Cu) atoms of  $Pd_{38}(Cu_{38})$  cluster has 6 and 9 coordination numbers, which present the characteristics of (1 1 1) and (1 0 0) facets [53,54]; Moreover, previous research work [55,56] found that the effect of two layers atoms at the bottom of  $Pd_{38}(Cu_{38})$  cluster on the adsorption and catalytic performance is not obvious. Thus, the half-part structure  $Pd_{19}(Cu_{19})$  cluster is used to represent Pd(Cu) active component supported over the metal oxide. The  $Pd_{19}(Cu_{19})$  cluster and Pd(1 1 1) (Cu(1 1 1)) surface, but also reduces the calculation time.

# 2.2.1. The supported Pd catalysts

For the supported Pd catalyst, four types of support widely used in  $C_2H_2$  semi-hydrogenation, rutile TiO<sub>2</sub>, anatase TiO<sub>2</sub>, MgO and  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, are considered. For the rutile and anatase TiO<sub>2</sub>, previous studies [40,41] demonstrated that the presence of oxygen-oxygen significantly improve the metal-support interaction, which is favorable to enhance the stability and catalytic performance of the supported catalysts. Thus, the oxygen-vacancy rutile and anatase are used, which is denoted as TiO<sub>2</sub>(1 1 0)-R-O<sub>v</sub> and TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub>, respectively. TiO<sub>2</sub>(1 1 0)-R-O<sub>v</sub> surface is composed of a  $p(4 \times 2)$  supercell with six-layers, the atoms in the bottom three layers are frozen. TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub> surface is composed of a twelve atomic layers), the uppermost six layers is relaxed during calculations. For the TiO<sub>2</sub> support, the oxygen-vacancy surface is formed by the removal of a bridge oxygen atom from the perfect TiO<sub>2</sub>

Applied Surface Science 503 (2020) 144142



Fig. 1. Top view and side view of the supported Pd catalysts, (a)  $Pd_{19}/TiO_2(110)$ -R-O<sub>v</sub>, (b)  $Pd_{19}/TiO_2(101)$ -A-O<sub>v</sub>, (c)  $Pd_{19}/\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0001) and (d)  $Pd_{19}/MgO(100)$ -O<sub>v</sub>.

surface.

 $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 0 1) surface is composed of a four-layers  $p(3 \times 3)$  supercell, the bottom one layer was frozen in the bulk positions. MgO (1 0 0) surface is composed of a  $p(4 \times 5)$  supercell with three atomic layers, the oxygen-vacancy MgO surface is formed by the removal of one oxygen atom from the perfect surface; the bottom one layer is fixed.

For these metal oxide surfaces, the thickness of the vacuum layer is 12 Å. Fig. 1 shows the top-view and side-view of the supported Pd catalysts.

#### 2.2.2. The supported Cu catalysts

For the supported Cu catalyst, two commonly used supports,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> and MgO, are employed. For  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, the mainly exposed (1 0 0) is more easily dehydrated than the (1 1 0) surface [57]; C<sub>2</sub>H<sub>2</sub> semi-hydrogenation on Cu-based catalysts operates at a higher temperature (> 460 K) [20,22], which is in favor of the formation of dehydrated surface; thus, the dehydrated  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(1 0 0) surface is selected.  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(1 0 0) surface is composed of an eight-layer  $p(3 \times 2)$  supercell with the bottom three layers of atoms fixed. MgO (1 0 0) surface is consisted of a three-layer  $p(4 \times 5)$  supercell, the bottom one layer is fixed, and the vacuum layer is 12 Å. The optimized structures of different supported Cu catalysts are shown in Fig. 2.

#### 3. Results and discussion

#### 3.1. Evaluation parameter of $C_2H_4$ selectivity

 $C_2H_4$  feedstock contains a trace amount of  $C_2H_2$  (< 1%) and large amount of  $C_2H_4$  (> 89%). [52]. Therefore, only when  $C_2H_2$  has



Fig. 2. Top view and side view of the supported Cu catalysts (a)  $Cu_{19}/\gamma$ -  $Al_2O_3(1\ 0\ 0),\ (b)Cu_{19}/MgO(1\ 0\ 0)-O_v.$ 

#### Table 1

Adsorption free energies of  $C_2H_x$  (x = 2-5) species over different supported Pd and Cu catalysts at 520 K.

| Catalysts                                                                                                                                                                                                                                       | Adsorption free energies $(G_{ads}/kJ \cdot mol^{-1})$ |                                                     |                                                |                                                     |                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--|
|                                                                                                                                                                                                                                                 | $C_2H_2$                                               | $C_2H_3$                                            | $C_2H_4$                                       | CHCH <sub>3</sub>                                   | $C_2H_5$                                          |  |
| $\begin{array}{l} Pd_{19}/TiO_2(1\ 1\ 0)\text{-}R\text{-}O_v\\ Pd_{19}/TiO_2(1\ 0\ 1)\text{-}A\text{-}O_v\\ Pd_{19}/\alpha\text{-}Al_2O_3(0\ 0\ 0\ 1)\\ Pd_{19}/MgO(1\ 0\ 0)\text{-}O_v\\ Cu_{19}/\gamma\text{-}Al_2O_3(1\ 0\ 0)\\ \end{array}$ | -178.6<br>-139.1<br>-201.0<br>-178.8<br>-206.2         | - 195.0<br>- 229.5<br>- 192.3<br>- 193.7<br>- 253.0 | - 54.9<br>- 73.8<br>- 63.6<br>- 57.1<br>- 75.1 | - 308.1<br>- 312.2<br>- 292.3<br>- 301.2<br>- 359.5 | - 127.2<br>- 98.6<br>- 97.8<br>- 136.8<br>- 199.9 |  |



Fig. 3. The adsorption free energies of  $C_2H_2$  and  $C_2H_4$  over different supported Pd and Cu catalysts at 520 K.

stronger adsorption ability than  $C_2H_4$ ,  $C_2H_2$  impurities can be effectively removed from  $C_2H_4$  feedstock. Consequently, the ability of  $C_2H_2$  and  $C_2H_4$  adsorption on the supported Pd and Cu catalysts are firstly considered (Table 1), Fig. 3 presents the adsorption free energies of  $C_2H_2$  and  $C_2H_4$ , suggesting that  $C_2H_2$  has stronger adsorption ability than  $C_2H_4$  on all supported catalysts at 520 K, namely, a small quantities of  $C_2H_2$  in large amount of  $C_2H_4$  prefers to be adsorbed over the catalyst surface, which promotes  $C_2H_2$  semi-hydrogenation.

For  $C_2H_2$  semi-hydrogenation, a lot of the theoretical work only considered the effect of  $C_2H_4$  intermediate route on  $C_2H_4$  selectivity so



Fig. 4. The possible reaction routes of C<sub>2</sub>H<sub>2</sub> semi-hydrogenation.

far [41,58–59]. For example, as Xu et al. [59] reported, the selectivity of  $C_2H_4$  can be defined by calculating the energy difference between  $C_2H_4$  hydrogenation and its desorption, but CHCH<sub>3</sub> intermediate route was not examined. As a matter of fact, the selectivity of  $C_2H_4$  can be affected by CHCH<sub>3</sub> intermediate route. As a result, in our work,  $C_2H_4$ *desorption*,  $C_2H_4$  *intermediate* and *CHCH<sub>3</sub> intermediate* routes of  $C_2H_2$ semi-hydrogenation are investigated (see Fig. 4). Further, if the catalysts could promote  $C_2H_4$  desorption route and inhibit the routes via  $C_2H_4$  and CHCH<sub>3</sub> intermediates, the catalysts would be effective for the removal of  $C_2H_2$  impurities.

This study firstly investigate the priority of  $C_2H_4$  desorption and its hydrogenation, when  $C_2H_4$  was easier to desorption rather than its hydrogenation to  $C_2H_5$ , the catalyst shows better selectivity of  $C_2H_4$ , which was defined as the energy difference by  $C_2H_4$  hydrogenation barrier subtracting the absolute value of  $C_2H_4$  adsorption energy, see the Eq. (5) [59]:

$$G_{\rm sel} = \Delta G_{\rm a} - |G_{\rm ads}| \tag{5}$$

where  $\Delta G_{a}$  and  $G_{ads}$  are C<sub>2</sub>H<sub>4</sub> hydrogenation barrier and its adsorption energy, respectively.

On the other hand, when  $C_2H_4$  desorption route was easier than its hydrogenation, the effect of CHCH<sub>3</sub> intermediate route on the selectivity of  $C_2H_4$  needs to be further examined; moreover, when the overall barrier of CHCH<sub>3</sub> intermediate route is lower than that of  $C_2H_4$ intermediate route, the value of  $C_2H_4$  selectivity was defined as the overall free barrier difference between CHCH<sub>3</sub> intermediate and  $C_2H_4$ desorption routes with respect to the  $C_2H_3$  + H species, which was calculated using the Eq. (6):

$$G_{\text{sel}} = \Delta G_a(\text{CHCH}_3 \text{ intermediate}) - \Delta G_a(C_2H_4 \text{ desorption})$$
 (6)

where  $\Delta G_{\rm a}$ (CHCH<sub>3</sub> intermediate) and  $\Delta G_{\rm a}$ (C<sub>2</sub>H<sub>4</sub> desorption) are the overall free barriers of CHCH<sub>3</sub> intermediate and C<sub>2</sub>H<sub>4</sub> adsorption routes with respect to the C<sub>2</sub>H<sub>3</sub> + H species, respectively. The more positive and larger values of  $G_{\rm sel}$  means that the catalysts shows better selectivity of C<sub>2</sub>H<sub>4</sub>, namely, C<sub>2</sub>H<sub>4</sub> desorption route prefers to occur instead of other two routes.

#### 3.2. $C_2H_2$ semi-hydrogenation on the supported Pd catalysts

On the Pd<sub>19</sub>/TiO<sub>2</sub>(1 1 0)-R-O<sub>v</sub> (Fig. 5(a)), C<sub>2</sub>H<sub>4</sub> desorption is more preferred over its hydrogenation (54.9 vs. 107.4 kJ·mol<sup>-1</sup>); meanwhile, starting from C<sub>2</sub>H<sub>3</sub> + H species, C<sub>2</sub>H<sub>4</sub> desorption route prefers to occur in kinetics instead of CHCH<sub>3</sub> intermediate route (104.1 vs. 155.4 kJ·mol<sup>-1</sup>); thus, the gaseous C<sub>2</sub>H<sub>4</sub> is dominant product with the corresponding selectivity value  $G_{sel}$  of 52.5 kJ·mol<sup>-1</sup>. Similarly, on the Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub> (Fig. 5(b)), C<sub>2</sub>H<sub>4</sub> desorption route to form gas phase C<sub>2</sub>H<sub>4</sub> is still dominant with the selectivity value of 127.8 kJ·mol<sup>-1</sup>.

For the Pd<sub>19</sub>/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 0 1) (Fig. 5(c)), C<sub>2</sub>H<sub>4</sub> desorption is much easier in kinetics than its hydrogenation (63.6 vs. 184.6 kJ·mol<sup>-1</sup>), however, CHCH<sub>3</sub> intermediate route to form ethane is more favorable in kinetics than C<sub>2</sub>H<sub>4</sub> desorption route (248.9 vs. 288.9 kJ·mol<sup>-1</sup>), suggesting that the Pd<sub>19</sub>/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 0 1) catalyst exhibits low selectivity of C<sub>2</sub>H<sub>4</sub> (-40.0 kJ·mol<sup>-1</sup>). For the Pd<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub> (Fig. 5(d)), C<sub>2</sub>H<sub>4</sub> desorption route is preferred in kinetics over its hydrogenation (57.1 vs. 213.5 kJ·mol<sup>-1</sup>), however, the overall free barrier of CHCH<sub>3</sub> intermediate route is higher by 9.5 kJ·mol<sup>-1</sup> than that of C<sub>2</sub>H<sub>4</sub> desorption route (257.3 vs. 247.8 kJ·mol<sup>-1</sup>), thus, C<sub>2</sub>H<sub>4</sub> desorption route is competitive with CHCH<sub>3</sub> intermediate route, the catalyst exhibits weak selectivity of C<sub>2</sub>H<sub>4</sub> (9.5 kJ·mol<sup>-1</sup>).

For the unsupported  $Pd_{38}$  cluster (Fig. S2),  $C_2H_4$  over-hydrogenation to ethane easily occur with the selectivity value  $G_{sel}$  of -73.1 kJ·mol<sup>-1</sup>, namely, the unsupported  $Pd_{38}$  cluster exhibits very poor  $C_2H_4$  selectivity.

In general, in comparison with the unsupported  $Pd_{38}$  cluster, the support of the supported Pd catalysts obviously improve the selectivity of  $C_2H_4$  ( $-73.1 vs. 52.5, 127.8, -40.0 \text{ and } 9.5 \text{ kJ} \text{ mol}^{-1}$ ) over the  $Pd_{19}/\text{TiO}_2(110)\text{-R-O}_v$ ,  $Pd_{19}/\text{TiO}_2(101)\text{-A-O}_v$ ,  $Pd_{19}/\alpha\text{-Al}_2O_3(0001)$  and  $Pd_{19}/MgO(100)\text{-O}_v$  catalysts, which depend on the types of the used support. Especially, the anatase and rutile TiO<sub>2</sub> supports thoroughly improve the selectivity of  $C_2H_4$  ( $127.8 \text{ and } 52.5 \text{ kJ} \cdot \text{mol}^{-1}$ ), whereas the  $\alpha\text{-Al}_2O_3$  and MgO supports still lead to the formation of ethane due to the occurrence of CHCH<sub>3</sub> intermediate route with poor  $C_2H_4$  selectivity.

### 3.3. $C_2H_2$ semi-hydrogenation on the supported Cu catalysts

On the Cu<sub>19</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(1 0 0) (Fig. 6(a)), C<sub>2</sub>H<sub>4</sub> desorption is more preferred in kinetics over its hydrogenation (75.1 vs. 182.9 kJ·mol<sup>-1</sup>). However, starting from the C<sub>2</sub>H<sub>3</sub> + H species, CHCH<sub>3</sub> intermediate route is much preferred in kinetics over C<sub>2</sub>H<sub>4</sub> desorption route (68.4 vs. 111.8 kJ·mol<sup>-1</sup>). Thus, CHCH<sub>3</sub> intermediate route to form ethane becomes dominant, which corresponds to the selectivity value G<sub>sel</sub> of -43.4 kJ·mol<sup>-1</sup>. For the Cu<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub> (Fig. 6(b)), C<sub>2</sub>H<sub>4</sub> desorption route becomes dominant corresponding to the selectivity value G<sub>sel</sub> of 101.3 kJ·mol<sup>-1</sup>. Further, for the unsupported Cu<sub>38</sub> cluster (Fig. S3), C<sub>2</sub>H<sub>4</sub> hydrogenation to C<sub>2</sub>H<sub>5</sub> is superior to C<sub>2</sub>H<sub>4</sub> desorption in kinetics (73.7 vs. 95.6 kJ·mol<sup>-1</sup>), suggesting that the unsupported Cu<sub>38</sub> cluster is easily over-hydrogenated to form ethane, and exhibits poor selectivity of C<sub>2</sub>H<sub>4</sub> (-21.9 kJ·mol<sup>-1</sup>).

As mentioned above, in comparison with the unsupported Cu<sub>38</sub> cluster,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> support decreased C<sub>2</sub>H<sub>4</sub> selectivity (-43.4 vs. -21.9 kJ·mol<sup>-1</sup>), whereas the oxygen-vacancy MgO support significantly improve C<sub>2</sub>H<sub>4</sub> selectivity (101.3 vs. -21.9 kJ·mol<sup>-1</sup>). Thus, the types of support also affect C<sub>2</sub>H<sub>4</sub> selectivity over the supported Cu catalysts.

#### 3.4. General discussion

Based on above analysis, the supported Pd and Cu catalysts with better selectivity of  $C_2H_4$  have been obtained, subsequently, the formation activity of  $C_2H_4$  is described by calculating the rate of  $C_2H_2$ semi-hydrogenation to  $C_2H_4$ , in which the proposed two-step model in



**Fig. 5.** Free energy profiles of three routes involving in  $C_2H_2$  semi-hydrogenation on the supported Pd catalysts. (a)  $Pd_{19}/TiO_2(1\ 1\ 0)$ -R-O<sub>v</sub>, (b)  $Pd_{19}/TiO_2(1\ 0\ 1)$ -A-O<sub>v</sub>, (c)  $Pd_{19}/\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 0 1) and (d)  $Pd_{19}/MgO(1\ 0\ 0)$ -O<sub>v</sub> together with the structures of ISs, TSs and FSs.

the studies of Hu et al. [60-62] is employed (see details in the Supplementary Material). Table 2 lists the rates of  $C_2H_4$  formation over the supported Pd and Cu catalysts with better  $C_2H_4$  selectivity.

3.4.1. Effects of support types and properties on the selectivity and activity

For the supported Pd catalysts (see Fig. 7 and Table 2), the selectivity of C<sub>2</sub>H<sub>4</sub> formation (*G*<sub>sel</sub>/kJ·mol<sup>-1</sup>) over the supported Pd catalysts follows the order: Pd<sub>38</sub>(-73.1) < Pd<sub>19</sub>/α-Al<sub>2</sub>O<sub>3</sub>(0 0 0 1)(-40.0) < Pd<sub>19</sub>/MgO(1 0 0) -O<sub>v</sub>(9.5) < Pd<sub>19</sub>/TiO<sub>2</sub>(1 1 0)-R-O<sub>v</sub>(52.5) < Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub>(127.8); The rate (*r*/s<sup>-1</sup>·site<sup>-1</sup>) corresponding to C<sub>2</sub>H<sub>4</sub> formation follows the order: Pd<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub>(4.03 × 10<sup>-12</sup>) < Pd<sub>38</sub>(8.71 × 10<sup>-2</sup>) < Pd<sub>19</sub>/TiO<sub>2</sub> (1 1 0)-R-O<sub>v</sub>(6.16 × 10<sup>0</sup>) < Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub>(6.19 × 10<sup>5</sup>). Thus, compared to the unsupported Pd catalyst, the supports of α-Al<sub>2</sub>O<sub>3</sub> and

oxygen-vacancy MgO still show poor  $C_2H_4$  selectivity and lower  $C_2H_4$  formation activity, whereas the oxygen-vacancy anatase and rutile TiO<sub>2</sub> supports exhibit higher selectivity of  $C_2H_4$  and its formation activity.

For the supported Cu catalysts (see Fig. 7 and Table 2), the selectivity of C<sub>2</sub>H<sub>4</sub> follows the order: Cu<sub>19</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(100) (-43.4) < Cu<sub>38</sub>(-21.9) < Cu<sub>19</sub>/MgO(100)-O<sub>v</sub>(101.3); and the sequence of reaction rate ( $r/s^{-1}$ ·site<sup>-1</sup>) is: Cu<sub>19</sub>/MgO(100)-O<sub>v</sub>(6.87 × 10<sup>-5</sup>) < Cu<sub>38</sub>(1.79 × 10<sup>-3</sup>).

As mentioned above, the selectivity of  $C_2H_4$  and its formation activity in  $C_2H_2$  semi-hydrogenation on the supported Cu and Pd catalysts depend on the types of the support. Meanwhile, the supported Pd catalyst is more favorable to improve the selectivity of  $C_2H_4$  than the supported Cu catalyst, namely, the newly-efficient Pd-based catalysts



should focus on the supported Pd-based catalyst instead of the supported Cu-based catalysts. Further, the oxygen-vacancy anatase  $TiO_2$  support exhibits higher selectivity of  $C_2H_4$  and its formation activity than the oxygen-vacancy rutile  $TiO_2$ . Experimental observations by Kontapakdee et al. [63] also found that the Pd/TiO<sub>2</sub>-anatase exhibited higher  $C_2H_2$  conversion and  $C_2H_4$  selectivity than the rutile  $TiO_2$  supported ones, and the oxygen-vacancy surface has better activity for  $C_2H_2$  semi-hydrogenation than the perfect surface. Thus, the support properties such as the crystalline phase and surface oxygen-vacancy affect the catalytic performance of the supported catalysts.

3.4.2. Effects of metal-support interaction on the selectivity and activity

In order to clarify the effects of support types and properties on the catalytic activity and selectivity in  $C_2H_2$  semi-hydrogenation, the interaction and charge distribution between the metal composition and the support were further calculated for the supported Pd and Cu catalysts.

As shown in Table 3, the interaction energies  $(kJ \cdot mol^{-1})$  between

Pd<sub>19</sub> cluster and different supports follows the order: Pd<sub>19</sub>/TiO<sub>2</sub>(1 1 0)-R-O<sub>v</sub>(-670.0) < Pd<sub>19</sub>/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 0 1)(-768.5) < Pd<sub>19</sub>/MgO (1 0 0)-O<sub>v</sub>(-901.8) < Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub>(-1007.4), the metalsupport interaction between Pd<sub>19</sub> cluster and the oxygen-vacancy anatase TiO<sub>2</sub> support is much stronger than that the other supported Pd catalysts, thus, Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub> catalyst presents higher C<sub>2</sub>H<sub>4</sub> selectivity and its formation activity. Moreover the average charge of

Pd atom on Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub> catalyst is -0.159 e, which is more negative than those (-0.154 e, -0.149 e and -0.150 e) on the other supported Pd catalysts, suggesting that for the supported Pd catalyst, the stronger metal-support interaction can enhance the selectivity of C<sub>2</sub>H<sub>4</sub> and its formation activity.

For the supported Cu catalysts, the interaction energies (kJ·mol<sup>-1</sup>) between Cu<sub>19</sub> cluster and different supports follows the order of Cu<sub>19</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>(-695.5) < Cu<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub>(-725.3), the average charge of Cu atom on Cu<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub> catalyst is also more negative than that on Cu<sub>19</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst (-0.240 *e vs.* -0.095 *e*), as a result, Cu<sub>19</sub>/MgO(1 0 0)-O<sub>v</sub> catalyst shigher C<sub>2</sub>H<sub>4</sub> selectivity and its formation activity than Cu<sub>19</sub>/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> catalyst.

In general, the stronger metal-support interaction in the supported Pd and Cu catalysts is in favor of enhancing the selectivity of  $C_2H_4$  and its formation activity. Moreover, the interaction between the support and Pd is much stronger than that between the support and Cu. Thus, in comparison with the supported Cu catalyst, the supported Pd catalyst, especially  $Pd_{19}/TiO_2(1\ 0\ 1)$ -A-O<sub>v</sub>, is the best candidate catalyst in  $C_2H_2$  semi-hydrogenation.

#### 3.4.3. The analysis of electronic structure

As mentioned above, the supported Pd catalyst is more suitable to form gaseous C2H4 in C2H2 semi-hydrogenation, the local density of states (pDOS) for the Pd atom of the supported Pd catalysts were calculated. As shown in Fig. 8(a-c), d-band center of different supported Pd catalysts follows the sequence of Pd<sub>19</sub>/TiO<sub>2</sub>(101)-A- $O_v(-2.55) < Pd_{19}/TiO_2(110) - R - O_v(-1.81) < Pd_{19}/MgO(100)$  $O_v(-1.55)$ . Among them, the *d*-band center for the Pd atoms of Pd<sub>19</sub>/ TiO<sub>2</sub>(101)-A-O<sub>v</sub> and Pd<sub>19</sub>/TiO<sub>2</sub>(110)-R-O<sub>v</sub> catalysts tends to stay away from the Fermi level than that of Pd<sub>19</sub>/MgO(100)-O<sub>v</sub> catalyst, especially, Pd<sub>19</sub>/TiO<sub>2</sub>(101)-A-O<sub>v</sub>. Thus, for the supported Pd catalysts, the support types and properties alter the *d*-orbital distribution of active component metal, and therefore affect the adsorption and activation process of the species on the catalysts, and further regulate the selectivity of C<sub>2</sub>H<sub>4</sub> and its formation activity for C<sub>2</sub>H<sub>2</sub> semi-hydrogenation. The oxygen-vacancy anatase TiO<sub>2</sub> support increase the distance between the *d*-band center of active Pd atom and the Fermi level, resulting in the highest activity.

#### 4. Conclusions

This work aims at identifying the functions of the support types, properties and metal-support interaction in affecting the selectivity of  $C_2H_4$  and its formation activity for  $C_2H_2$  semi-hydrogenation; different supported Pd and Cu catalysts are examined. The results show that the support types affect the selectivity of  $C_2H_4$  and its formation activity; for the supported Pd catalysts, both  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> and oxygen-vacancy MgO supports present low  $C_2H_4$  selectivity and its formation activity, while the oxygen-vacancy anatase and rutile TiO<sub>2</sub> supports show better selectivity of  $C_2H_4$  and its formation activity. For the supported Cu catalysts,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> support shows lower  $C_2H_4$  selectivity in contrast to the unsupported Cu catalyst, whereas the oxygen-vacancy MgO support effectively enhances the selectivity of  $C_2H_4$  but reduced its formation activity. On the other hand, the support properties such as crystalline phase and oxygen-vacancy affect the selectivity of  $C_2H_4$  and its formation activity in contrast to the selectivity; the anatase TiO<sub>2</sub> support exhibits better catalytic



(b) Cu<sub>19</sub>/MgO(100)-O<sub>v</sub>

Fig. 6. Free energy profiles of three routes involving in  $C_2H_2$  semi-hydrogenation on (a)  $Cu_{19}/\gamma$ - $Al_2O_3(100)$  and (b)  $Cu_{19}/MgO(100)$ - $O_v$  together with the structures of ISs, TSs and FSs.

#### Table 2

The values of  $G_R^{ad} - G_R^{de} + G_P^{de}$ ,  $G_P^{de}$  (kJ·mol<sup>-1</sup>), the reaction rate  $(r/s^{-1}\text{-site}^{-1})$ and the selectivity  $(G_{\text{sel}}/\text{kJ·mol}^{-1})$  of C<sub>2</sub>H<sub>4</sub> formation at 520 K over different supported Pd and Cu catalysts, as well as the unsupported Pd and Cu clusters.

| Clusters                                                                                                                                                                                                                                                                                            | G <sub>sel</sub>                                                      | r                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} Pd_{19}/TiO_2(1\ 1\ 0)\text{-}R\text{-}O_v\\ Pd_{19}/TiO_2(1\ 0\ 1)\text{-}A\text{-}O_v\\ Pd_{19}/\alpha\text{-}Al_2O_3(0\ 0\ 0\ 1)\\ Pd_{19}/MgO(1\ 0\ 0)\text{-}O_v\\ Cu_{19}/\gamma\text{-}Al_2O_3(1\ 0\ 0)\\ Cu_{19}/MgO(1\ 0\ 0)\text{-}O_v\\ Pd_{38}\\ Cu_{38} \end{array}$ | 52.5<br>127.8<br>- 40.0<br>9.5<br>- 43.4<br>101.3<br>- 73.1<br>- 21.9 | $\begin{array}{c} 6.16 \times 10^{0} \\ 6.19 \times 10^{5} \\ / \\ 4.03 \times 10^{-12} \\ / \\ 6.87 \times 10^{-5} \\ 8.71 \times 10^{-2} \\ 1.79 \times 10^{-3} \end{array}$ |



**Fig. 7.** The selectivity  $(G_{sel}/kJ \cdot mol^{-1})$  and activity  $(\lg r/s^{-1} \cdot site^{-1})$  of  $C_2H_4$  formation in  $C_2H_2$  semi-hydrogenation over the supported Pd and Cu catalysts.

#### Table 3

The interaction energies  $(E_{int}/kJ \cdot mol^{-1})$  between the metal and the support for the supported Pd and Cu catalysts together with the Mulliken charges of Pd(Cu) atoms (*e*).

| Catalysts                                                                                                                                                                                                                                                                         | $E_{\rm int}  ({\rm kJ} \cdot {\rm mol}^{-1})$                  | Pd/Cu charge                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $\begin{array}{l} Pd_{19}/TiO_2(1\ 1\ 0)\text{-}R\text{-}O_v\\ Pd_{19}/TiO_2(1\ 0\ 1)\text{-}A\text{-}O_v\\ Pd_{19}/\alpha\text{-}Al_2O_3(0\ 0\ 0\ 1)\\ Pd_{19}/MgO(1\ 0\ 0)\text{-}O_v\\ Cu_{19}/\gamma\text{-}Al_2O_3(1\ 0\ 0)\\ Cu_{19}/MgO(1\ 0\ 0)\text{-}O_v\\ \end{array}$ | - 670.0<br>- 1007.4<br>- 768.5<br>- 901.8<br>- 695.5<br>- 725.3 | $\begin{array}{r} -0.154 \\ -0.159 \\ -0.149 \\ -0.150 \\ -0.095 \\ -0.240 \end{array}$ |

performance toward C<sub>2</sub>H<sub>4</sub> formation than the rutile phase, moreover, the surface oxygen-vacancy significantly enhance the selectivity of C<sub>2</sub>H<sub>4</sub> and its formation activity. Further, the supported Pd catalysts exhibit better catalytic performance than the supported Cu catalysts, which is attributed to that the metal-support interaction of the supported Pd catalysts was much stronger than that of the supported Cu catalysts. Thus, the supported Pd catalyst, especially Pd<sub>19</sub>/TiO<sub>2</sub>(1 0 1)-A-O<sub>v</sub> catalyst, is the promising catalyst for C<sub>2</sub>H<sub>2</sub> semi- hydrogenation.

## **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



**Fig. 8.** Projected density of states (pDOS) plots of the *d*-orbitals for the supported Pd and Cu catalysts. (a)  $Pd_{19}/TiO_2(1\ 1\ 0)$ -R-O<sub>v</sub>, (b)  $Pd_{19}/TiO_2(1\ 0\ 1)$ -A-O<sub>v</sub> and (c)  $Pd_{19}/MgO(1\ 0\ 0)$ -O<sub>v</sub>.

#### Acknowledgment

This work is financially supported by the National Natural Science Foundation of China (No. 21776193), the Key projects of National Natural Science Foundation of China (No. 21736007) and the Top Young Innovative Talents of Shanxi, and U.S. NSF-sponsored NCAR-Wyoming Supercomputing Center (NWSC).

# Appendix A. Supplementary material

The detailed descriptions about all the stable adsorption configuration of  $C_2H_x(x = 2-5)$  species, the structures of initial states, transition states, final states involving in  $C_2H_2$  semi-hydrogenation over different supported Pd and Cu catalysts, as well as two-step model of  $C_2H_4$  formation have been presented. Supplementary data to this article can be found online at https://doi.org/10.1016/j.apsusc.2019.144142.

#### References

- P.A. Sheth, M. Neurock, C.M. Smith, A first-principles analysis of acetylene hydrogenation over Pd(111), J. Phys. Chem. B 107 (2003) 2009–2017.
- [2] Q.W. Zhang, J. Li, X.X. Liu, Q.M. Zhu, Synergetic effect of Pd and Ag dispersed on Al<sub>2</sub>O<sub>3</sub> in the selective hydrogenation of acetylene, Appl. Catal. A: Gen. 197 (2000) 221–228.
- [3] F.M. McKenna, J.A. Anderson, Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO<sub>2</sub> catalysts, J. Catal. 281 (2011) 231–240.
- [4] Suthana Chinayon, Okorn Mekasuwandumrong, Piyasan Praserthdam, Joongjai Panpranot, Selective hydrogenation of acetylene over Pd catalysts supported on nanocrystalline α-Al<sub>2</sub>O<sub>3</sub> and Zn-modified α-Al<sub>2</sub>O<sub>3</sub>, Catal. Commun. 9 (14) (2008) 2297–2302, https://doi.org/10.1016/j.catcom.2008.03.032.
- [5] J.H. Kang, E.W. Shin, W.J. Kim, J.D. Park, S.H. Moon, Selective hydrogenation of acetylene on TiO<sub>2</sub>-added Pd catalysts, J. Catal. 208 (2002) 310–320.
- [6] J.H. Kang, E.W. Shin, W.J. Kim, J.D. Park, S.H. Moon, Selective hydrogenation of acetylene on Pd/SiO<sub>2</sub> catalysts promoted with Ti, Nb and Ce oxides, Catal. Today 63 (2000) 183–188.
- [7] Y.Y. Zhang, W.J. Diao, C.T. Williams, J.R. Monnier, Selective hydrogenation of

acetylene in excess ethylene using Ag- and Au–Pd/SiO<sub>2</sub> bimetallic catalysts prepared by electroless deposition, Appl. Catal. A: Gen. 469 (2014) 419–426.

- [8] B. Ngamsom, N. Bogdanchikova, M.A. Borja, P. Praserthdam, Characterisations of Pd–Ag/Al<sub>2</sub>O<sub>3</sub> catalysts for selective acetylene hydrogenation: effect of pretreatment with NO and N<sub>2</sub>O, Catal. Commun. 5 (2004) 243–248.
- [9] J. Osswald, K. Kovnir, M. Armbrüster, R. Giedigkeit, R.E. Jentoft, U. Wild, Y. Grin, R. Schlögl, Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part II: surface characterization and catalytic performance, J. Catal. 258 (2008) 219–227.
- [10] S.K. Kim, J.H. Lee, I.Y. Ahn, W.J. Kim, S.H. Moon, Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation, Appl. Catal. A: Gen. 401 (2011) 12–19.
- [11] A. Sárkány, O. Geszti, G. Sáfrán, Preparation of Pd<sub>shell</sub>-Au<sub>core</sub>/SiO<sub>2</sub> catalyst and catalytic activity for acetylene hydrogenation, Appl. Catal. A: Gen. 350 (2008) 157–163.
- [12] T.V. Choudhary, C. Sivadinarayana, A.K. Datye, D. Kumar, D.W. Goodman, Acetylene hydrogenation on Au-based catalysts, Catal. Lett. 86 (2003) 1–8.
- [13] A. Sárkány, A. Horváth, A. Beck, Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO<sub>2</sub> catalysts, Appl. Catal. A: Gen. 229 (2015) 117–125.
- [14] G.X. Pei, X.Y. Liu, A. Wang, A.F. Lee, M.A. Isaacs, L. Li, X. Pan, X. Yang, X. Wang, Z. Tai, Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene, ACS Catal. 5 (2015) 3717–3725.
- [15] N.A. Khan, S. Shaikhutdinov, H.J. Freund, Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts, Catal. Lett. 108 (2006) 159–164.
- [16] J.H. Lee, S.K. Kim, I.Y. Ahn, W.J. Kim, S.H. Moon, Performance of Pd–Ag/Al<sub>2</sub>O<sub>3</sub> catalysts prepared by the selective deposition of Ag onto Pd in acetylene hydrogenation, Catal. Commun. 12 (2011) 1251–1254.
- [17] L. Guczi, Z. Schay, G. Stefler, L.F. Liotta, G. Deganello, A.M. Venezia, Pumicesupported Cu-Pd catalysts: influence of copper on the activity and selectivity of palladium in the hydrogenation of phenylacetylene and but-1-ene, J. Catal. 182 (1999) 456–462.
- [18] S. Leviness, V. Nair, A.H. Weiss, Z. Schay, L. Guczi, Acetylene hydrogenation selectivity control on PdCu/Al<sub>2</sub>O<sub>3</sub> catalysts, J. Mol. Catal. 25 (1984) 131–140.
- [19] J.T. Wehrli, D.J. Thomas, M.S. Wainwright, D.L. Trimm, N.W. Cant, Selective hydrogenation of propyne over supported copper catalysts: influence of support, Appl. Catal. 70 (1991) 253–262.
- [20] M.R. Stammbach, D.J. Thomas, D.L. Trimm, M.S. Wainwright, Hydrogenation of ethyne over an ion-exchanged copper on silica catalyst, Appl. Catal. 58 (1990) 209–217.
- [21] A.J. McCue, C.J. McRitchie, A.M. Shepherd, J.A. Anderson, Cu/Al<sub>2</sub>O<sub>3</sub> catalysts modified with Pd for selective acetylene hydrogenation, J. Catal. 319 (2014) 127–135.
- [22] B. Bridier, M.A.G. Hevia, N. López, J. Pérez-Ramírez, Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by eemporary CO supply, J. Catal. 278 (2011) 167–172.
- [23] R.G. Zhang, B. Zhao, L.L. He, A.J. Wang, B.J. Wang, Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C<sub>2</sub>H<sub>2</sub> to C<sub>2</sub>H<sub>4</sub>: the effect of the promoter on selectivity and activity, Phys. Chem. Chem. Phys. 20 (2018) 17487–17496.
- [24] R.G. Zhang, B. Zhao, L.X. Ling, A.J. Wang, C.K. Russell, B.J. Wang, M.H. Fan, A costeffective Pd-doped Cu bimetallic materials to tuning selectivity and activity using doped atom ensembles as active sites for efficient removal of acetylene from ethylene, Chem. Cat. Chem. 10 (2018) 2424–2432.
- [25] G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M.F. Stephanopoulos, E.C.H. Sykes, Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations, Science 335 (2012) 1209–1212.
- [26] H. Yoshida, T. Nakajima, Y. Yazawa, T. Hattori, Support effect on methane combustion over palladium catalysts, Appl. Catal. B: Environ. 71 (2007) 70–79.
- [27] P. Sangeetha, K. Shanthi, K.S. RamaRao, B. Viswanathan, P. Selvam, Hydrogenation of nitrobenzene over palladium-supported catalysts—effect of support, Appl. Catal. A: Gen. 353 (2009) 160–165.
- [28] T. Nanba, S. Masukawa, J. Uchisawa, A. Obuchi, Effect of support materials on Ag catalysts used for acrylonitrile decomposition, J. Catal. 259 (2008) 250–259.
- [29] S. Kattel, B.H. Yan, J.G. Chen, P. Liu, CO<sub>2</sub> hydrogenation on Pt, Pt/SiO<sub>2</sub> and Pt/ TiO<sub>2</sub>: importance of synergy between Pt and oxide support, J. Catal. 343 (2016) 115–126.
- [30] R.G. Zhang, M. Peng, B.J. Wang, Catalytic selectivity of Rh/TiO<sub>2</sub> catalyst in syngas conversion to ethanol: probing into the mechanism and functions of TiO<sub>2</sub> support and promoter, Catal. Sci. Technol. 7 (2017) 1073–1085.
- [31] E. Lalik, A. Drelinkiewicz, R. Kosydar, R. Tokarz-Sobieraj, M. Witko, T. Szumełda, J. Gurgul, D. Duraczynska, A role of Au-content in performance of Pd-Au/SiO<sub>2</sub> and Pd-Au/Al<sub>2</sub>O<sub>3</sub> catalyst in the hydrogen and oxygen recombination reaction. The microcalorimetric and DFT studies, Appl. Catal. A: Gen. 517 (2016) 196–210.
- [32] A.A. Mirzaei, S. Vahid, H.O. Torshizi, Effect of support and promoter on the catalytic performance and structural properties of the Fe-Co-Ni catalysts for CO hydrogenation, J. Nat. Gas. Sci. Eng. 15 (2013) 106–117.
- [33] H.Y. Wang, E. Ruckenstein, Partial oxidation of methane to synthesis gas over MgOand SiO<sub>2</sub>-supported rhodium catalysts, J. Catal. 186 (1999) 181–187.
- [34] S. Komeili, M.T. Ravanchi, A. Taeb, The influence of alumina phases on the performance of the Pd-Ag/Al<sub>2</sub>O<sub>3</sub> catalyst in tail-end selective hydrogenation of acetylene, Appl. Catal. A: Gen. 502 (2015) 287–296.

and Zn-modified  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, Catal. Commun. 9 (2008) 2297–2302.

- [36] S. Komhom, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, Improvement of Pd/Al<sub>2</sub>O<sub>3</sub> catalyst performance in selective acetylene hydrogenation using mixed phases Al<sub>2</sub>O<sub>3</sub> support, Catal. Commun. 10 (2008) 86–91.
- [37] C.K. Lambert, R.D. Gonzalez, Activity and selectivity of a Pd/γ-Al<sub>2</sub>O<sub>3</sub> catalytic membrane in the partial hydrogenation reactions of acetylene and 1,3-butadiene, Catal. Lett. 57 (1999) 1–7.
- [38] Y.Z. Li, B.L. Xu, Y.N. Fan, N. Feng, A.D. Qiu, J.W. Miao, J. He, H.P. Yang, Y. Chen, The effect of titania polymorph on the strong metal-support interaction of Pd/TiO<sub>2</sub> catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes, J. Mol. Catal. A: Chem. 216 (2004) 107–114.
- [39] J. Yang, C.Q. Lv, Y. Guo, G.C. Wang, A DFT + U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO<sub>2</sub> supported Pd<sub>4</sub> cluster, J. Chem. Phys. 136 (2012) 104107–104120.
- [40] J.W. Wan, W.X. Chen, C.Y. Jia, L.R. Zheng, J.C. Dong, X.S. Zheng, Y. Wang, W.S. Yan, C. Chen, Q. Peng, D.S. Wang, Y.D. Li, Defect effects on TiO<sub>2</sub> nanosheets: stabilizing single atomic site Au and promoting catalytic properties, Adv. Mater. 30 (2018) 1705369–1705376.
- [41] J. Yang, L.X. Cao, G.C. Wang, Acetylene hydrogenation on anatase TiO<sub>2</sub>(101) supported Pd<sub>4</sub> cluster: oxygen deficiency effect, J. Mol. Model. 18 (2012) 3329–3339.
- [42] H.Y. Liu, B.T. Teng, M.H. Fan, B.J. Wang, Y. Zhang, H. Gordon Harris, CH<sub>4</sub> dissociation on the perfect and defective MgO(001) supported Ni<sub>4</sub>, Fuel 123 (2014) 285–292.
- [43] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1 (2009) 37–46.
- [44] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508–517.
- [45] D.X. Tian, H.L. Zhang, J.J. Zhao, Structure and structural evolution of Ag<sub>n</sub>(n = 3-22) clusters using a genetic algorithm and density functional theory method, Solid State Commun. 144 (2007) 174–179.
- [46] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
- [47] M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-adjusted Ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86 (1987) 866–872.
- [48] Y. Inada, H. Orita, Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to gaussian basis sets, J. Comput. Chem. 29 (2008) 225–232.
- [49] T.A. Halgren, W.N. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular rransition states, Chem. Phys. Lett. 49 (1977) 225–232.
- [50] N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, A generalized synchronous transit method for transition state location, Comput. Mater. Sci. 28 (2003) 250–258.
- [51] R.G. Zhang, B. Zhao, L.X. Ling, A.J. Wang, C.K. Russell, B.J. Wang, M.H. Fan, Costeffective palladium-doped Cu bimetallic materials to tune selectivity and activity by using doped atom ensembles as active sites for efficient removal of acetylene from ethylene, Chem. Cat. Chem. 10 (2018) 2424–2432.
- [52] B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study, J. Catal. 305 (2013) 264–276.
- [53] Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO<sub>2</sub> hydrogenation on Cu(111), Cu clusters, and Cu/ZnO (0001), Phys. Chem. Chem. Phys. 12 (2010) 9909–9917.
- [54] I.A. Hijazi, Y.H. Park, Structure of pure metallic nanoclusters: Monte Carlo simulation and Ab initio study, Eur. Phys. J. D. 59 (2010) 215–221.
- [55] B. Zhao, R.G. Zhang, Z.X. Huang, B.J. Wang, Effect of the size of Cu clusters on selectivity and activity of acetylene selective hydrogenation, Appl. Catal. A: Gen. 546 (2017) 111–121.
- [56] R.G. Zhang, M. Peng, T. Duan, B.J. Wang, Insight into size dependence of C<sub>2</sub> oxygenate synthesis from syngas on Cu cluster: the effect of cluster size on the selectivity, Appl. Surf. Sci. 407 (2017) 282–296.
- [57] M.C. Valero, P. Raybaud, P. Sautet, Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and  $C_2H_4$  adsorption on  $Pd_4/\gamma$ - $Al_2O_3$ , J. Catal. 247 (2007) 339–355.
- [58] L.D. Meng, G.C. Wang, A DFT+U study of acetylene selective hydrogenation over anatase supported Pd<sub>a</sub>Ag<sub>b</sub>(a+b=4) cluster, Phys. Chem. Chem. Phys. 16 (2014) 17541–17550.
- [59] L. Xu, E.E. Stangland, M. Mavrikakis, Ethylene versus ethane: A DFT-based selectivity descriptor for efficient catalyst screening, J. Catal. 362 (2018) 18–24.
- [60] J. Cheng, P. Hu, Theory of the kinetics of chemical potentials in heterogeneous catalysis, Angew. Chem. Int. Ed. 50 (2011) 7650–7654.
- [61] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Brønsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis, J. Phys. Chem. C 112 (2008) 1308–1311.
- [62] X.M. Cao, R. Burch, C. Hardacre, P. Hu, An understanding of chemoselective hydrogenation on crotonaldehyde over Pt(111) in the free energy landscape: The microkinetics study based on first-principles calculations, Catal. Today 165 (2011) 71–79.
- [63] K. Kontapakdee, J. Panpranot, P. Praserthdam, Effect of Ag addition on the properties of Pd-Ag/TiO<sub>2</sub> catalysts containing different TiO<sub>2</sub> crystalline phases, Catal. Commun. 8 (2007) 2166–2170.