

Available online at [www.sciencedirect.com](www.sciencedirect.com/science/journal/03603199)

ScienceDirect

journal homepage: <www.elsevier.com/locate/he>

Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature

Yinghui Sun ^a, Guojie Zhang ^{a,b,}*, Ying Xu ^a, Riguang Zhang ^a
.

^a Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China

^b College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, PR China

article info

Article history: Received 22 January 2019 Received in revised form 15 March 2019 Accepted 25 April 2019 Available online 21 May 2019

Keywords: Carbon dioxide reforming of methane N-doped activated carbon Cobalt Calcination temperature Nitrogen doping

ABSTRACT

The nitrogen doped activated carbon (AC-N) has been successfully prepared with commercial activated carbon as carbon material followed by a simple N-doping method using melamine as nitrogen sources. Using AC-N as the supports, cobalt supported on N-doped activated carbon (Co/AC-N) were developed and used as catalyst for dry reforming reaction (DRM). It was discovered that the Co/AC-N catalysts revealed much higher catalytic performance for DRM reaction in comparison to activated carbon supported cobalt catalyst (Co/AC). Moreover, the catalytic activity was influenced by preparation conditions of AC-N such as calcination temperature and the doping amount of nitrogen. The catalysts were characterized by BET, XRD, XPS, H₂-TPR, Raman spectroscopy and TEM. It was found that catalytic activities of the catalysts with different calcination temperature and nitrogen doping were influenced by catalyst surface defects and disorders, Co^{2+}/Co^{3+} molar ratio, the content of nitrogen function groups (graphitic N, pyrrolic-N and pyridinic-N) and interaction between active metal and support. The Raman spectroscopy illustrated that the N-doped catalyst surface defects and disorders increased, which improved the performances of the Redox catalysts. The XPS valence band also revealed that higher Co^{2+}/Co^{3+} molar ratio and nitrogen function groups was achieved by decreasing calcination temperature and increasing nitrogen doping. In short, the doping of nitrogen increased the structural defects and the interaction between active metals and supports, modified the surface electronic structure, which were facilitated the oxidation and reduction of methane and carbon dioxide.

© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Global warming has become more serious because of the emission of greenhouse gas, which appears as one of the

greatest challenges we have to face in the world [\[1\].](#page-9-0) Many responses such as $CO₂$ utilization and capture technologies [\[2,3\]](#page-9-0) can help to reduce the content of greenhouse gas. Meanwhile, the main components of coke oven gas $[4]$ CH₄ is

* Corresponding author.

E-mail addresses: zhangguojie@tyut.edu.cn, zhgjdoc@126.com (G. Zhang). <https://doi.org/10.1016/j.ijhydene.2019.04.250>

^{0360-3199/}© 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

also a kind of greenhouse and the release of it causes great attention of human.

In recent years, various transformation technologies are proposed to use both greenhouse gases to get valuable chemical products. Dry reforming of methane (DRM) reaction is one of effective transformation methods to use CH4 and $CO₂$ to produce syngas. Additionally, the H₂/CO molar ratio products are close to 1 and it is appropriate for valuedadded chemical productions through Fischer-Tropsch (FT) process [\[5\]](#page-9-0).

A series of metal catalysts, such as Ni, Co and Fe catalysts, have proven to have high catalytic activity for the DRM $[6-8]$ $[6-8]$. Among these metals, the Co-based catalysts showed excellent catalytic activity. Due to the difference in carbon deposition behavior from Ni-based catalysts and higher oxygen affinity, Co-based catalysts also be used as a potential catalyst for DRM reaction $[9-11]$ $[9-11]$. Moreover, many reports have demonstrated that Co-based catalysts showed lower water-gas shift (WGS) activity [\[12,13\].](#page-10-0)

Several variables, such as support, modification method of support, promoter and preparation method can also affect that the catalytic performance $[14-16]$ $[14-16]$. The type of support has great influence on catalytic performance. Carbon materials, such as activated carbon (AC) [\[17,18\],](#page-10-0) carbon nanotubes (CNTs) [\[19,20\],](#page-10-0) carbon nanofibers (CNF) [\[21,22\]](#page-10-0), etc., are promising supports, because of its large surface area and high stability. However, most carbon materials are chemically inert. Doping carbon materials with heteroatoms such as N and S can effectively enhance surface defects and functional groups $[23-26]$ $[23-26]$ $[23-26]$. Doping carbon materials with N, which are able to enhance electron mobility and modify electron density of C neighboring the nitrogen doped atoms [\[27,28\].](#page-10-0) In addition, it is well known that the basicity of catalyst is improved by introducing nitrogenous groups onto carbon surface.

There are two main ways to introduce N in active materials: 1) pyrolyzing N-containing precursors such as glucosamine [\[29\]](#page-10-0), melamine resin [\[30,31\]](#page-10-0) and polyurethane [\[32,33\]](#page-10-0) to obtain N-doped carbon materials; 2) using N-containing compounds such as melamine $[34,35]$, NH₃ $[36,37]$ and urea [\[38,39\]](#page-10-0) to modify carbon materials. There are three main kinds of nitrogenous functional group (pyridinic N, pyrrolic N, quaternary N) in N-doped catalysts. Previous studies have shown that pyridinic-N and pyrrolic-N have good activity for redox reaction $[40-42]$ $[40-42]$. The nitrogen atoms overlap with carbon atoms on pyridine ring to form a σ bond with sp² hybridized orbitals. The Pyridinic N can increase the electronic density near the Fermi level, thus the valence band structure of carbon materials can be effectively improved by Pyridinic N [\[43,44\].](#page-11-0) The carbon atoms and nitrogen atom of pyrrole ring are hybrid sp^2 , nitrogen atom provide two p electrons to the pyrrole ring. Pyridinic N and pyrrolic N with lone-pair electrons are main Lewis basic sites for N-doped carbon materials, these basic sites have an extensive potential for ORR [\[45,46\].](#page-11-0) Moreover, nitrogen sources and preparation conditions have great influence on the type and content of nitrogen functional groups. Liu et al. [\[47\]](#page-11-0) has studied the influence of calcination temperature on Fe-N-doped porous carbon catalyst activity for oxygen reduction reaction. The highest catalytic performance was achieved on the catalyst calcined at 900 $^{\circ}$ C due to the excellent surface structure and higher content of pyridinic N. Liu et al. [\[48\]](#page-11-0) has investigated the influence of melamine amount on the morphology of N-doped carbon nanotubes. It demonstrated that the election transfer between valence and conduction bands has greatly improve when the melamine concentration increased.

Although a considerable amount of research has been carried out on the N-doped carbon materials for electrochemical reactions, the catalytic performance of N-doped activated carbon-supported cobalt for DRM reaction has not been studied specifically so far. As known, the N-doped carbon materials could lead to greatly improvement of the redox potential. Here, we report on the development of a series of activated carbon catalysts doped with nitrogen and supported cobalt for DRM reaction. The effect of the nitrogen doping, the presence of nitrogenous functional groups and valence state of cobalt in the catalysts was investigated. We will show that the activity is significantly improved doping with nitrogen. Additionally, the influence of the calcination temperature and the doping amount of nitrogen on catalysts activity was investigated.

Experimental

Catalyst preparation

The coal based activated carbon employed in study was purchased from Xinhua Activated Carbon Factory, China. It was crushed into particles and used as support with the average size of about 0.83–0.88 mm. The nitrogen doping AC (AC-N) was prepared by melamine amination treatment route. Typically, 20 g AC was placed in beaker with 13.3 g of melamine, which was obtained from Aladdin Industrial Corporation (Shanghai, China.) dissolved in 70 mL of 80% alcohol-water solution. The homogeneous mixture was heated up form room temperature to 60 $^{\circ} \text{C}$ under continuously stirring for 5 h, followed by evaporating and drying under 110 $^{\circ}$ C for 24 h. The dried samples were heat-treated at target temperature (650, 750 and 850 $^{\circ}$ C), with a ramp of 5 $^{\circ}$ C/ min and calcined in the tube furnace with a nitrogen flow rate of 100 sccm for 2 h. Finally, the samples were cooled to room temperature and used as supports. The modified AC were designated as AC-N-T (where T represents the calcination temperature). A series of catalysts with different calcination temperature were prepared as follows. In brief, the AC-N was placed in an aqueous $Co(NO₃)₂·6H₂O$ (from Aladdin) solution with constantly stirring for 5 h. After the impregnation, the samples were filtered and dried at 105 $^\circ$ C in vacuum drying oven for 24 h, and then calcined at different temperature (5 $^{\circ}$ C/min ramp rate from room temperature) for 2 h in nitrogen atmosphere.

For further study of the influence of dopant concentrations on the catalytic activity. A series of different nitrogen content catalysts were prepared by the same method as above. The adding quantity of the melamine was different (13.3, 8.86 and 4.43 g), all of the modified supports were calcined at 650 °C. The prepared catalysts were denoted as Co/AC-N-M (where M represents the addition of melamine). The Co/AC catalyst without modification was prepared and used for comparison.

Catalyst characterization

 $N₂$ adsorption-desorption experiments of all samples were conducted by on a constant volume adsorption apparatus (Beishide Instrument-ST (Beijing) Co., Ltd). All the samples were outgassed in vacuum at 250 °C under a flow of N_2 for 240 min before physisorption measurements. The pore size distribution and the pore diameter of micropore were determined by the Density Functional Theory model. The total pore volume of the catalysts was calculated from the volume of N_2 adsorption at $P/P₀$ of 0.99.

Bruker D8 instrument was used in transmission mode to examined the XRD patterns of calcined samples. The instrument was operated in high-throughput mode and was equipped with a Cu-Ka radiation.

X-ray photoelectron spectroscopy (XPS) analyses were conducted on a Thermo ESCALAB 250 spectrometer, using Al-Ka (1486.6 eV) X-ray source. The graphitic C1s signal at 284.8 eV was used as internal standard to correct possible deviations caused by the catalyst electric charging. The deconvolution and integration of signals was conducted by the Multipak software.

H2-TPR of samples were collected in Micromeritics AutoChem 2920 instrument equipped with TCD detector to record H_2 consumption. Each fresh sample were loaded at the bottom of U-shape reactor. Before reduction, the sample was outgassed at 300 $^{\circ}$ C for 30 min in an argon stream, and then the sample was cooled to 30 °C, the reductant gas 10% $\rm H_2 – Ar$ (30 mL/min) was introduced and the TPR began from 30 $^\circ$ C to 900 °C with a ramp of 10 °C/min.

Raman spectra were measured with Horiba Scientific instrument with an excitation-beam wavelength of 532 nm in the extended range of 100–1000 cm^{-1} . The active species distributions of the samples were carried out by using a TEM apparatus (Philips GM200).

Catalytic activity test

The catalytic performances of the samples for DRM reaction were carried out in a continuous-flow system using a fixedbed quartz tube reactor (I.D. $=$ 25 mm) at atmospheric pressure. For each reaction 10 g catalyst was used, and the reactant gas stream included 60 mL/min CH4 and 60 mL/min CO2 was introduced into the reactor. The contents of effluent gas from reactor were analyzed by using GC-950 (Shanghai Haixin Instrument) equipped with two molecular sieve columns. In this study, the conversions of CH4 and CO2 (X_{CH_4} and X_{CO_2}) were calculated using the following formulas:

$$
\begin{aligned} X_{CH_4} = (1-\frac{F_{out} \cdot C_{CH_4,out}}{F_{in} \cdot C_{CH_4,in}}) \times 100\% \\ X_{CO_2} = (1-\frac{F_{out} \cdot C_{CO_2,out}}{F_{in} \cdot C_{CO_2,in}}) \times 100\% \end{aligned}
$$

Results and discussion

Characterization of catalysts

Fig. 1a displays N_2 -adsorption-desorption isotherms of the catalysts at different calcining temperatures. All the catalysts

Fig. $1 - N_2$ -adsorption-desorption isotherms and pore size distribution of catalysts at different calcining temperatures.

show type I isotherm with a H4 hysteresis loop that sharply increases at low pressure followed by a slow increase at half way, demonstrating the micropore structure. The hysteresis loop for all catalysts are similar, Co/AC-N-850 has broader hysteresis loop than the other two, demonstrating a higher calcination temperature would lead to larger specific surface area and pore volume. Texture parameters of the catalysts are shown in [Table 1,](#page-3-0) it can be seen that the specific surface area and pore volume of the catalysts slightly increased with the increase of calcination temperature. Fig. 1b shows the pore size distribution of catalysts, all the catalysts hold large number of micro-pores with the size less than 2 nm. There is a peak between 3 and 4 nm for every catalyst, which indicates that the existence of a small amount of mesoporous. It can be seen that the micropores size slightly decreases with the decrease of calcination temperature.

The XRD patterns of Co/AC-N-650, Co/AC-N-750 and Co/ AC-N-850 are shown in [Fig. 2.](#page-3-0) It is observed that all samples have a strong peak at $2\theta = 26.6^{\circ}$, which correspond to the carbon (PDF-#26-1076). The diffraction peaks appear at $2\theta = 42.4$ and 36.4 \degree are attributed to CoO phase (PDF-#43-1004). Moreover, the peak of $Co₂O₃$ (PDF-#02-0770) and

BET specific area.

b Average pore diameter calculated by BJH method.

 ϵ Total pore volumes were obtained at P/P₀ = 0.99.

 $Co₃O₄$ (PDF-#43-1003) are detected in the XRD patterns of all samples. Moreover, the peak at 60.02 $^{\circ}$ corresponds to the SiC (PDF- $#22-1316$), this mainly due to the activated carbon which was prepared from coal.

The XPS analysis was used to determine the chemical composition and state of the N-doped catalysts. Fig. 3a shows the full XPS spectrum of three catalysts, it can be seen that the N-doped catalysts mainly composed of C, N, O and Co elements. Peaks centered at around 400 and 800 eV for all catalysts correspond to N1s and Co2p, respectively. The existence of N 1s peak in all catalysts demonstrated that N atoms were successfully doped into activated carbon support catalysts. Moreover, the XPS element analysis shows the content of N elements are 8.61%, 7.58% and 7.17% in N-doped catalysts calcined at 650, 750 and 850 °C, respectively.

The XPS spectrum of Co 2p in the Co/AC-N catalyst with various calcination temperature is shown in Fig. 3b. According to the precious studies [\[49,50\],](#page-11-0) the XPS experimental data and peak deconvolution indicate that six peaks could fit well for Co 2p peak, which correspond to the Co^{2+} satellite, Co^{2+} and $Co³⁺$. The generation of satellite peak are attributed to the energy levels splitting of Co, and it is used to confirm the existence of Co^{2+} . The Co^{2+} satellite/ Co^{3+} and Co^{2+}/Co^{3+} ratio have shown in [Table 2,](#page-4-0) which were obtained by the peak fitting. However, the Co^{3+} species were not observed for Co $2p_{3/2}$ on the surface of these catalysts. As shown in Fig. 3b, two

Fig. 2 - XRD patterns of Co/AC-N-650, Co/AC-N-750 and Co/ AC-N-850.

Fig. 3 – (a) XPS survey, (b) Co 2p scan and (c) N 1s scan of Co/AC-N-650, Co/AC-N-750, Co/AC-N-850.

peaks at 780.3 and 781.8 eV in the Co 2p_{3/2} XPS spectrum of Co/ AC-N-650, which are attributed to Co^{3+} and Co^{2+} . Co^{0} species were not detected by XPS analysis, which is consistent with the XRD analysis. Compared with Co $2p_{3/2}$ the XPS spectrum of Co/AC-N-650, the binding energy of $Co³⁺$ and $Co²⁺$ shifted to lower energy when the calcination temperature reached 750 and 850 °C. It was noticed that the Co^{2+}/Co^{3+} ratio decreased

^b The molar ratio of Co²⁺/Co³⁺ and Co²⁺ satellite/Co³⁺ was calculated from peak area in Fig. 4b.

with the increase of calcination temperature. It was suggested that electron transfer was happened and some of the Co^{2+} converted into Co^{3+} when the calcination temperature increased. As shown in [Fig. 3](#page-3-0)c, the N 1s spectra was well fitted into three peaks, which correspond to pyrrolic-N, pyridinic-N and quaternary-N [\[40,43,51\],](#page-11-0) all three types of nitrogenous functional groups were detected in the three catalyst. For three catalysts, pyridinic-N and graphitic N are main groups, which take up more than 80% of the total nitrogenous functional groups. More graphitic N was doped in the catalysts, increasing from 40.37 to 42.59% along with the increase of calcination temperature. However, the increase of calcination temperature causes the decrease of the content of pyrrolic-N and pyridinic-N. This contributed to the higher thermal stability of graphitic N than pyrrolic-N and pyridinic-N. The increase in calcination temperature also leaded to the decrease of the content of N atom. Moreover, the ratio decreases of the $Co²⁺$ satellite/ $Co³⁺$ and $Co²⁺/Co³⁺$ suggesting that the doping of N enhance the catalytic reducibility. H_2 -TPR analysis results of the calcinated Co/AC-N-650, Co/AC-N-750 and Co/AC-N-850 samples are presented in Fig. 4. It can be found that two main peaks (peak α in the range of 300–500 °C and peak β in the range of 500–800 $^{\circ}$ C) is found for all N-doped catalysts. The peak α is attributed to the reduction of high dispersion Co₃O₄ to CoO and the peak β is attributed to the reduction of CoO to Co⁰, which strongly interact with the N-doped supports [\[15,52](#page-10-0)–[54\].](#page-10-0) The reduction of Co₃O₄ to CoO (peak α) produced quickly to generate a broad profile, which indicated there were many homogeneous particle sizes of $Co₃O₄$ and different types of interaction between active metal and support [\[55\].](#page-11-0) The difference of calcination temperature does not significantly affect the H₂-TPR profiles. However, a shift of the peak α and peak β towards lower temperature is presented for three catalysts with the increase of calcination temperature, indicating that much stronger interaction of Co species with the support at lower calcination temperatures.

The Raman spectra of Co/AC-N-650, Co/AC-N-750 and Co/ AC-N-850 were obtained to further study the graphitization degrees of the catalysts. In the case of Raman spectra (Fig. 5), two peaks can be ascribed to the D-band and G-band, respectively. The D band centered at 1345 cm^{-1} corresponding to the disordered carbon and G-band centered at 1580 cm^{-1} corresponding to the graphite with a higher degree of ordered carbon. The disordered carbon structures of the catalysts are obtained by the ratio of the G-band and D-band (I_D/I_G). It can be seen that, all the N-doped catalysts display high ratios of I_D / I_G , indicating the generation of more defective sites and orders, which can be attributed to the introduction of N. Compared with Co/AC-N-750 and Co/AC-N-850 (1.73 and 1.60), Co/AC-N-650 has the highest intensity ratio (2.49). The result indicates more defects and disorders were formed at low calcination temperature. Moreover, similar positions of the D and G bands and no other peaks were detected for all catalysts, which indicates that no new structure were generated.

[Fig. 6](#page-5-0) shows the CH_4 –CO₂ reforming activities of Co/AC-N-650, Co/AC-N-750, Co/AC-N-850 at different reaction temperature. The experiments were carried out from 650 $^{\circ} \mathrm{C}$ to 900 $^{\circ} \mathrm{C}$

Fig. $4 - H_2$ -TPR profile of Co/AC-N-650, Co/AC-N-750, Co/ AC-N-850.

Fig. $5 -$ Raman spectra of Co/AC-N-650, Co/AC-N-750, Co/ AC-N-850.

Fig. $6 - CH_4$ (a) and CO₂ (b) conversion of Co/AC-N-650, Co/ AC-N-750, Co/AC-N-850 at different reaction temperature.

with CH₄: $CO₂ = 1:1$ and the flow rate of mixed gas was 120 mL/ min. At each temperature, the reaction maintained for 30 min. The CH₄ and CO₂ conversion were evaluated on the basis of average values. The CH_4 and CO_2 conversion increased with the rising of reaction temperature. However, the catalytic activity declined when reaction temperature reached 800 $^{\circ}$ C. This results are consistent with our previous research study [\[56\].](#page-11-0) Moreover, the $CO₂$ conversion was always higher, which was attributed to the RWGS reaction ($CO_2 + H_2 \rightarrow CO + H_2O$). As evidenced in Fig. 6, the catalytic activity of Co/AC-N-650 is higher than Co/AC-N-850 and Co/AC-N-750. This might be related to the high ratio of Co^{2+} and more defective sites on catalysts. It has been suggested that the defective sites would favour the redox reaction, providing much more active sites in the catalyst and enhancing the electron transfer rate.

To further study the longevity of the catalysts, the CH_4 and $CO₂$ conversion as function of time were investigated to evaluate performance stability of DRM reaction over the catalysts. Fig. 7a and b shows the $CH₄$ and $CO₂$ conversion over Co/AC-N-650, Co/AC-N-750, and Co/AC-N-850, respectively. The initial conversion of CH_4 and CO_2 over three catalysts are unstable in the first 100 min, the CH_4 and CO_2 conversion of three catalysts could be observed to decrease with prolonging

Fig. 7 $-$ Stability tests at 800 $^{\circ}$ C: CH $_4$ (a) and CO $_2$ (b) conversion over the catalysts calcined with different temperature. Reaction conditions: $CH_4/CO_2 = 1:1$, total flow rate $= 120$ mL/min, 1 atm.

reaction time. The decrease and increase of the activity may be attributed that a part of active metals poisoned by surface oxygen, due to the strong adsorption to oxygen species. However, the specific reasons for this phenomenon is unclear [\[57\].](#page-11-0) The experimental results indicate that all catalysts possessed high and same initial activity which decreased quickly with time. The reaction time was about 100 min, the catalytic activity reached the lowest level. There was a slowly increase in activity with time, after reaching a minimum. Although the conversions were lower than the initial values, the CH₄ and CO₂ conversion reached a stably state after the 600 min mark. For Co/AC-N-650, the CH₄ and CO₂ conversion were 59% and 73% respectively when the activity was stable. The $CO₂$ conversion rates of Co/AC-N-750 and Co/AC-N-850 were same but it was lower than Co/AC-N-650. The $CO₂$ conversion of three catalysts are higher than those of CH_4 , which demonstrates that the reverse of WGSR reaction occurred simultaneously [\[58,59\]](#page-11-0).

The TEM analysis was used to study the Co particle size distributions and particle size of fresh and spent catalysts. [Fig. 8a](#page-6-0)-c and d-f shows the TEM micrographs of the fresh Co/

Fig. 8 - TEM images of the fresh (a-c) and used (d-f) Co/AC-N-650 catalysts.

AC-N-650 catalysts and used catalysts after 750 min reaction, respectively. The cobalt species particles size distributions of fresh and spent catalysts are also shown in Fig. 8a and d. As shown in Fig. 8a $-c$, the size of cobalt species particles was varied from 7 to 21 nm with an average particle size of about 12.82 nm. It demonstrated cobalt species were distributed uniformly on the surface of AC-N-650. Compared the TEM micrographs before and after the catalyst, the average particles size (13.7) of spent catalysts was found to increase slightly. Moreover, the diameter of most particles was in the range of $10-16$ nm, it was indicated that the cobalt species were dispersed homogeneously over the surface of AC-N-650 and no agglomeration was occurred between particles after long DRM reaction.

[Fig. 9](#page-7-0) shows the nitrogen adsorption-desorption isotherms and pore size distribution of samples with different nitrogen content and without N-doped. As shown in [Fig. 9](#page-7-0)a, all samples show a type I isotherm with a H4 hysteresis loop, indicating a high specific surface area. Compared with non-nitrogen doped catalysts, pore volume of N-doped catalysts decreased with the increase of melamine content. From [Table 3](#page-7-0) it can be seen that the doping amount of nitrogen has great influence on catalysts physical structure. The specific surface area of the catalysts decreased from 773.6 to 727.2 m^2/g when the addition of melamine increased from 4.43 to 13.3 g.

For comparison, other Co/AC-N-M were also prepared using different content of melamine. As shown in [Fig. 10a](#page-7-0), peaks centered at about 400 and 790 eV for all catalysts

Fig. $9 - N_2$ -adsorption-desorption isotherms and pore size distribution of Co/AC, Co/AC-N-4.43, Co/AC-N-8.86 and Co/ AC-N-13.3.

correspond to N1s and Co 2p, respectively. The doping levels of N increased with the increase of melamine addition. A small amounts of N element were detected for Co/AC catalysts, this mainly due to the existence of N-containing groups in coal-based activated carbon. The atomic ratios of three catalysts are shown in Table 4. As shown in Table 4, it can be seen that the content of O also increased with the increasing of nitrogen doping and highest content of Co was detected on

 $^{\rm a}$ BET specific area. $^{\rm b}$ Total pore volumes were obtained at P/P $_{\rm 0}$ = 0.99.

 $\,^{\rm c}$ Average pore diameter calculated by BJH method.

Fig. $10 - (a)$ XPS survey, (b) Co 2p scan and (c) N 1s scan of Co/AC, Co/AC-N-4.43, Co/AC-N-8.86, Co/AC-N-13.3.

Co/AC-N-13.3 catalyst by XPS analysis, this result is in consistent with the result that highest content of O on Co/AC-N-13.3. The characterization results have shown that the chemical compositions of catalysts were changed by doping N atoms in the Co-based catalysts. The Co 2p spectra of four catalysts are shown in [Fig. 10](#page-7-0)b and the corresponding data are listed in Table 5. As shown in [Fig. 4](#page-4-0)b, the experimental results were deconvoluted by six peaks, which correspond to the Co^{2+} satellite, Co^{2+} and Co^{3+} . The Co^{3+} species were still not detected for Co $2p_{3/2}$ in all catalysts. The surface atomic ratios are shown in Table 5. It could be observed that Co^{2+}/Co^{3+} and Co^{2+} satellite/ Co^{3+} ratios increased with the increase of melamine addition. That the doping of N enhances the catalytic reducibility. H_2 -TPR analysis results of the calcinated Co/AC, Co/AC-N-4.43, Co/AC-N-8.86, Co/AC-N-13.3 catalysts is presented in Fig. 11. It can be seen that two main peaks (peak α and peak β) is found for all N-doped and undoped catalysts. For undped catalyst Co/AC, small peak centered around 350 $^{\circ} \mathrm{C}$ was detected, which contributed to the reduction of high dispersion Co₃O₄, the peak at 370 °C could be attributed to the reduction of CoO. Compared with undoped catalysts, peak b shifted to the higher temperatures for all N-doped catalysts, due to the higher interaction between active metals and supports. Moreover, the intensity of peak β for N-doped catalysts increased, which indicated that more active species was loaded on the modified and higher dispersity was achieved on these catalysts.

Fig. 11 $-$ H₂-TPR profiles of Co/AC, Co/AC-N-4.43, Co/AC-N-8.86, Co/AC-N-13.3.

Fig. 12 shows the conversions of $CH₄$ and $CO₂$ on Co/AC , $Co/$ AC-N-4.43, Co/AC-N-8.86 and Co/AC-N-13.3 at different reaction temperature. Each temperature interval was sustained for 30 min until the catalyst bed temperature was stable. The $CH₄$ and $CO₂$ conversions were obtained on the basis of average values. The CH_4 conversion of all catalyst (Fig. 12a) shows that the highest conversion is achieved by Co/AC-N-13.3. The lowest conversion of CH_4 is displayed by Co/AC, the sample without N doping of the. It is obvious that the conversion of $CO₂$ was higher than that of $CH₄$ for four

Fig. 12 – CH₄ (a) and CO₂ (b) conversion of Co/AC, Co/AC-N-4.43, Co/AC-N-8.86, Co/AC-N-13.3 at different reaction temperature.

catalysts due to the occurring of RWGS reaction. For all Ndoped catalysts, it was observed that CH_4 and CO_2 conversions increased with the increase in reaction temperature because of the characteristics of endothermic for DRM reaction. Moreover, the modification of has great influence on catalytic activity when the reaction temperature was below 900 $^{\circ}$ C.

To investigate the stability of Co/AC-N-M catalysts, the DRM reaction was conducted at 800 $^\circ$ C. The conversions of $CH₄$ and CO₂ of Co/AC-N-M catalysts are shown in Fig. 13. For all catalysts, the initial CH₄ and CO₂ conversions were basically same, the conversion of $CO₂$ was higher than $CH₄$ due to the RWGS reaction. All catalysts deactivated rapidly after 100 min and than the catalytic activity increased and kept stable after 650 min. This could be attributed to the catalyst reconstruction during DRM reaction. Compared with unmodified catalyst, the catalytic performance had varying degrees of improve after nitrogen doping. Among all catalysts, Co/AC-N-13.3 has the highest performance, CH_4 and CO_2 conversions reached 59% and 73% respectively after 740 min reaction. Despite a high surface area, Co/AC had lowest

Fig. 13 $-$ Stability tests at 800 $^{\circ}$ C: CH $_4$ (a) and CO $_2$ (b) conversion over catalysts with different nitrogen doping. Reaction conditions: $CH₄/CO₂ = 1:1$, total flow rate $= 120$ mL/min, 1 atm.

catalytic performance with $CH₄$ and $CO₂$ conversions of 50.16% and 65.94 respectively. The catalytic activity order of four catalysts for DRM reaction is Co/AC-N-13.3 ˃ Co/AC-N-4.43 ˃ Co/AC-N-8.86 ˃ Co/AC. It was obvious that chemical property of the has significantly influenced on the catalytic performance of catalysts.

Conclusions

Nitrogen doped activated carbon cobalt catalyst was prepared by impregnation method for DRM reaction. The nitrogen doping could remarkably improve the catalyst performance. Characterization results indicated that N introduction improved the oxidation-reduction ability, increased the molar ratio of Co^{2+}/Co^{3+} and the interaction between active metal and, which are facilitated for the enhancement of DRM activity. Moreover, a series of different calcination temperature and nitrogen doping catalysts were prepared. The results demonstrated that preparation conditions of N-doped carbon material had different effect on the performance of Co/AC-N catalysts. By comparing the catalytic activities of the catalysts with different calcination temperature and nitrogen doping catalysts, it was concluded that highest catalytic activity was achieved on the catalyst, which the calcination temperature was 650 $^{\circ}$ C and the amount of nitrogen doping was 13.3 g. Highest Co^{2+}/Co^{3+} molar ratio and most surface defects were obtained on this catalyst.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21676174, U1610115 and 21878200), International S&T Cooperation Program of Shanxi province (201703D421038), Shanxi Scholarship Council of China (2017- 036), and Joint Fund of Shanxi Provincial Coal Seam Gas (2015012019).

references

- [1] [Abasaeed AE, Al-Fatesh AS, Naeem MA, Ibrahim AA,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref1) Fakeeha AH. Catalytic performance of $CeO₂$ and $ZrO₂$ [supported Co catalysts for hydrogen production via dry](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref1) [reforming of methane. Int J Hydrogen Energy](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref1) [2015;40:6818](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref1)-[26](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref1).
- [2] Özkara-Aydınoğlu Ş[,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref2) Ö[zensoy E, Aksoylu AE. The effect of](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref2) [impregnation strategy on methane dry reforming activity of](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref2) Ce promoted Pt/ZrO₂. Int J Hydrogen Energy 2009;34:9711-[22.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref2)
- [3] [Kumar N, Kanitkar S, Wang Z, Haynes D, Shekhawat D,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref3) [Spivery JJ. Dry reforming of methane with isotopic gas](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref3) [mixture over Ni-based pyrochlore catalyst. Int J Hydrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref3) [Energy 2019;44:4167](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref3)-[76.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref3)
- [4] [Xie H, Yu Q, Zhang Y, Zhang J, Liu J, Qin Q. New process for](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref4) [hydrogen production from raw coke oven gas via sorption](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref4)[enhanced steam reforming: thermodynamic analysis. Int J](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref4) [Hydrogen Energy 2017;42:2914](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref4)-[23.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref4)
- [5] [Steen EV, Schulz H. Polymerisation kinetics of the Fischer-](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref5)[Tropsch CO hydrogenation using iron and cobalt based](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref5) [catalysts. Appl Catal Gen 1999;186:309](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref5)-[20](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref5).
- [6] Zhang G, Hao L, Yong J, Du Y, Zhang Y. $CO₂$ reforming of CH₄ over efficient bimetallic Co-Zr/AC catalyst for H_2 [production.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref6) [Int J Hydrogen Energy 2015;40:12868](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref6)-[79.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref6)
- [7] [Ayodele BV, Khan MR, Su SL, Cheng CK. Production of CO](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref7)[rich hydrogen from methane dry reforming over lanthania](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref7)[supported cobalt catalyst: kinetic and mechanistic studies.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref7) [Int J Hydrogen Energy 2016;41:4603](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref7)-[15.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref7)
- [8] Zhao B, Yan B, Yao S, Xie Z, Wu Q, Ran R, et al. La $Fe_{0.9}Ni_{0.1}O_3$ [perovskite catalyst with enhanced activity and coke](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref8)[resistance for dry reforming of ethane. J Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref8) [2018;358:168](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref8)-[78](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref8).
- [9] [Bouarab R, Akdim O, Auroux A, Cherifi O, Mirodatos C. Effect](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref9) of MgO additive on catalytic properties of $Co/SiO₂$ [in the dry](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref9) [reforming of methane. Appl Catal Gen 2005;264:161](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref9)-[8.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref9)
- [10] [Aider N, Touahra F, Bali F, Djebarri B, Lerari D, Bachari K,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10) [et al. Improvement of catalytic stability and carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10) resistance in the process of $CO₂$ [reforming of methane by](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10) [CoAl and CoFe hydrotalciet-derived catalyts. Int J Hydrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10) [Energy 2018;43:8256](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10)-[66](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref10).
- [11] [Omoregbe O, Danh HT, Nguyen-Huy C, Setiabudi HD,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11) [Abidin SZ, Truong QD, et al. Syngas production from](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11) [methane dry reforming over Ni/SBA-15 catalyst: effect of](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11) [operating parameters. Int J Hydrogen Energy](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11) [2017;42:11283](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11)-[94.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref11)
- [12] [Tsoukalou A, Imtiaz Q, Kim SM, Abdala PM, Yoon S,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12) Mü[ller CR. Dry-reforming of methane over bimetallic Ni-M/](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12) $La₂O₃$ [\(M](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12) = Co, Fe): the effect of the rate of $La₂O₂CO₃$ [formation and phase stability on the catalytic activity and](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12) [stability. J Catal 2016;343:208](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12)-[14.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref12)
- [13] [Karemore AL, Vaidya PD, Sinha R, Chugh P. On the dry and](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref13) mixed reforming of methane over Ni/Al₂O₃-Influence of [reaction variables on syngas production. Int J Hydrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref13) [Energy 2016;41:22963](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref13)-[75](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref13).
- [14] [Li Z, Min L, Bian Z, Kathiraser Y, Kawi S. Design of highly](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref14) [stable and selective core/yolk-shell nanocatalysts-A review.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref14) [Appl Catal B Environ 2016;188:324](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref14)-[41.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref14)
- [15] [Li Z, Wang Z, Kawi S. Sintering and coke resistant core/yolk](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref15) [shell catalyst for hydrocarbon reforming. ChemCatChem](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref15) [2019;11:202](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref15)-[24](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref15).
- [16] [Li Z, Kawi S. Multi-Ni@Ni phyllosilicate hollow sphere for](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref16) CO₂ reforming of CH₄: influence of Ni precursors on [structure, sintering, and carbon resistance. Catal Sci Technol](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref16) [2018;8:1915](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref16)-[22](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref16).
- [17] [Wigmans T, Elfring R, Moulijn JA. On the mechanism of the](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref17) [potassium carbonate catalysed gasification of activated](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref17) [carbon: the influence of the catalyst concentration on the](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref17) [reactivity and selectivity at low steam pressures. Carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref17) 1983:21:1-[12](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref17).
- [18] [Zhu J, Carabineiro SAC, Shan D, Faria JL, Zhu Y, Figueiredo JL.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref18) [Oxygen activation sites in gold and iron catalysts supported](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref18) [on carbon nitride and activated carbon. J Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref18) [2010;274:207](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref18)-[14.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref18)
- [19] [Villa A, Wang D, Dimitratos N, Su D, Trevisan V, Prati L. Pd on](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref19) [carbon nanotubes for liquid phase alcohol oxidation. Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref19) [Today 2010;150:8](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref19)-[15](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref19).
- [20] [Rajalakshmi N, Ryu H, Shaijumon MM, Ramaprabhu S.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref20) [Performance of polymer electrolyte membrane fuel cells](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref20) [with carbon nanotubes as oxygen reduction catalyst support](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref20) [material. J Power Sources 2005;140:250](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref20)-[7](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref20).
- [21] [Jarrah NA, Ommen JGV, Lefferts L. Mechanistic aspects of the](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref21) [formation of carbon-nanofibers on the surface of Ni foam: a](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref21) [new microstructured catalyst support. J Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref21) [2006;239:460](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref21)-[9](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref21).
- [22] [Chinthaginjala JK, Seshan K, Lefferts L. Preparation and](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref22) [application of carbon-nanofiber based microstructured](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref22) [materials as catalyst supports. Ind Eng Chem Res](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref22) [2007;46:3968](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref22)-[78.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref22)
- [23] [Guo D, Han S, Ma R, Zhou Y, Liu Q, Wang J, et al. In situ](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref23) [formation of iron-cobalt sulfides embedded in N, S-doped](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref23) [mesoporous carbon as efficient electrocatalysts for oxygen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref23) [reduction reaction. Microporous Mesoporous Mater](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref23) $2018:270:1-9.$ $2018:270:1-9.$ $2018:270:1-9.$
- [24] [Chen L, Xu C, Yang L, Zhou M, He B, Chen Z, et al. Nitrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref24)[doped holey carbon nanotubes: dual polysulfides trapping](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref24) [effect towards enhanced lithium-sulfur battery](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref24) [performance. Appl Surf Sci 2018;454:284](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref24)-[92](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref24).
- [25] [Yin X, Sun W, Lv LP, Wang Y. Boosting lithium-ion storage](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref25) performance by synergistically coupling $Zn_{0.76}Co_{0.24}S$ with [N-/S-doped carbon and carbon nanofiber. Chem Eng J](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref25) [2018;346:376](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref25)-[87.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref25)
- [26] [Feng LL, Zou Y, Li C, Gao S, Zhou LJ, Sun Q, et al. Nanoporous](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref26) [sulfur-doped graphitic carbon nitride microrods: a durable](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref26) catalyst for visible-light-driven H_2 [evolution. Int J Hydrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref26) [Energy 2014;39:15373](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref26)-[9](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref26).
- [27] [Johansson AC, Larsen JV, Verheijen MA, Haugshøj KB,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref27) [Clausen HF, Kessels WMM, Christensen LH, Thomsen EV.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref27) [Electrocatalytic activity of atomic layer deposited Pt-Ru](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref27) [catalysts onto N-doped carbon nanotubes. J Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref27) 2014:311:481-[6](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref27).
- [28] [Yong JC, Han SK, Im H, Myung Y, Jung GB, Chi WL, et al.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref28) [Nitrogen-doped graphitic layers deposited on silicon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref28) [nanowires for efficient lithium-ion battery anodes. J Phys](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref28) [Chem C 2013;115:9451](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref28)-[7](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref28).
- [29] [Qu H, Zhang X, Zhan J, Sun W, Si Z, Chen H. Biomass-based](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref29) [nitrogen-doped hollow carbon nanospheres derived directly](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref29) [from glucose and glucosamine: structural evolution and](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref29) [supercapacitor properties. Acs Sustain Chem Eng](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref29) 2018:6:7380-[9](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref29).
- [30] [Yu J, Guo M, Muhammad F, Wang A, Yu G, Ma H, et al. Simple](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref30) [fabrication of an ordered nitrogen-doped mesoporous](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref30) [carbon with resorcinol-melamine-formaldehyde resin.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref30) [Microporous Mesoporous Mater 2014;190:117](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref30)-[27](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref30).
- [31] [Wang H, Wang W, Gui M, Asif M, Wang Z, Yu Y, et al.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref31) Uniform Fe₃O₄/nitrogen-doped mesoporous carbon spheres [derived from ferric citrate-bonded melamine resin as an](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref31) [efficient synergistic catalyst for oxygen reduction. ACS Appl](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref31) [Mater Interfaces 2017;9:335](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref31)-[44](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref31).
- [32] [Yang Y, Zhang J, Zhuang J, Wang X. Synthesis of nitrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref32)[doped carbon nanostructures from polyurethane sponge for](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref32) [bioimaging and catalysis. Nanoscale 2015;7:12284](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref32)-[90](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref32).
- [33] [Xiao S, Liu S, Zhang J, Wang Y. Polyurethane-derived N](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref33)[doped porous carbon with interconnected sheet-like](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref33) [structure as polysulfide reservoir for lithium-sulfur batteries.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref33) [J Power Sources 2015;293:119](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref33)-[26.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref33)
- [34] [Ning X, Liu Z, Hu A, Tang Q, Fan B, Zhang S, et al. In-situ](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34) [construction of interconnected N-doped porous carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34)[carbon nanotubes networks derived from melamine](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34) anchored with $MoS₂$ [for high performance lithium-ion](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34) [batteries. J Alloy Comp 2018;744:75](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34)-[81.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref34)
- [35] [Sun X, Zhang W, Tang D, Qiao ZA, Liu Y, Liang D, et al. Co](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref35)[entrapped, N-doped mesoporous carbons prepared from](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref35) melamine formaldehyde resins with $CoCl₂$ [as template for](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref35) [hydrogen evolution. J Colloid Interface Sci 2018;516:416](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref35)-[22.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref35)
- [36] [Horikawa T, Sakao N, Sekida T, Hayashi JI, Do DD, Katoh M.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref36) [Preparation of nitrogen-doped porous carbon by ammonia](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref36) [gas treatment and the effects of N-doping on water](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref36) [adsorption. Carbon 2012;50:1833](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref36)-[42.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref36)
- [37] [Wang Y, Liu H, Wang K, Song S, Tsiakaras P. 3D](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37) [interconnected hierarchically porous N-doped carbon with](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37) [NH3](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37) [activation for efficient oxygen reduction reaction. Appl](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37) [Catal B Environ 2017;210:57](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37)-[66](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref37).
- [38] [Zou K, Deng Y, Chen J, Qian Y, Yang Y, Li Y, et al.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38) [Hierarchically porous nitrogen-doped carbon derived from](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38) [the activation of agriculture waste by potassium hydroxide](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38)

[and urea for high-performance supercapacitors. J Power](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38) [Sources 2018;378:579](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38)-[88](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref38).

- [39] [Wang K, Xu M, Gu Y, Gu Z, Fan QH. Symmetric](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref39) [supercapacitors using urea-modified lignin derived N-doped](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref39) [porous carbon as electrode materials in liquid and solid](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref39) [electrolytes. J Power Sources 2016;332:180](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref39)-[6](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref39).
- [40] [Wang X, Tang Y, Shi P, Fan J, Xu Q, Min Y. Self-evaporating](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40) [from inside to outside to construct cobalt oxide](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40) [nanoparticles-embedded nitrogen-doped porous carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40) [nanofibers for high-performance lithium ion batteries. Chem](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40) [Eng J 2018;334:1642](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40)-[9.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref40)
- [41] [Zhong ME, Guan J, Feng Q, Wu X, Xiao Z, Zhang W, et al.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41) [Accelerated polysulfide redox kinetics revealed by ternary](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41) [sandwich-type S@Co/N-doped carbon nanosheet for high](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41)[performance lithium-sulfur batteries. Carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41) [2018;128:86](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41)-[96](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref41).
- [42] [Su C, Pei C, Wu B, Qian J, Tan Y. Highly doped carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref42) [nanobelts with ultrahigh nitrogen content as high](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref42)[performance supercapacitor materials. Small](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref42) [2017;13\(29\):1700834.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref42)
- [43] [Amir O, Kalish R. Properties of nitrogen-doped amorphous](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref43) hydrogenated carbon films. J Appl Phys 1991:70:4958-[62](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref43).
- [44] [Wang H, Maiyalagan T, Wang X. Review on recent progress](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref44) [in nitrogen-doped graphene: synthesis, characterization,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref44) [and its potential applications. ACS Catal 2012;2:781](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref44)-[94.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref44)
- [45] [Ying X, Mo Y, Jing T, Ping W, Yu H, Yu J. The synergistic effect](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref45) [of graphitic N and pyrrolic N for the enhanced photocatalytic](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref45) performance of nitrogen-doped graphene/TiO₂ [nanocomposites. Appl Catal B Environ 2016;181:810](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref45)-[7](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref45).
- [46] [Jia Q, Ramaswamy N, Tylus U, Strickland K, Li J, Serov A,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref46) [et al. Spectroscopic insights into the nature of active sites in](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref46) [iron-nitrogen-carbon electrocatalysts for oxygen reduction](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref46) [in acid. Nanomater Energy 2016;29:65](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref46)-[82](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref46).
- [47] [Liu Z, Jing Y, Li X, Zhang L, Dong L, Liu X, et al. Facile](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref47) synthesis of N-doped carbon layer encapsulated Fe₂N as an [efficient catalyst for oxygen reduction reaction. Carbon](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref47) [2017;127:636](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref47)-[42](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref47).
- [48] Liu H, Zhang Y, Li R, Sun X, Désilets S, Abou-Rachid H, et al. [Structural and morphological control of aligned nitrogen](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref48)[doped carbon nanotubes. Carbon 2010;48:1498](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref48)-[507](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref48).
- [49] Li Z, Li M, Jangam A, Kawi S. NiCo@NiCo phyllosilicate@CeO₂ [hollow core shell catalysts for steam reforming of toluene as](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref49)

[biomass tar model compound. Energy Convers Manag](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref49) [2019;180:822](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref49)-[30](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref49).

- [50] [Sharma BK, Sharma MP, Kumar S, Roy SK, Roy SK,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref50) [Badrinarayanan S, et al. Studies on cobalt-based Fischer-](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref50)[Tropsch catalyst and characterization using SEM and XPS](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref50) [techniques. Appl Catal Gen 2001;211:203](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref50)-[11.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref50)
- [51] Liu ZQ, Cheng H, Li N, Ma TY, Su YZ. $ZnCo₂O₄$ [quantum dots](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref51) [anchored on nitrogen-doped carbon nanotubes as reversible](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref51) [oxygen reduction/evolution electrocatalysts. Adv Mater](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref51) [2016;28:3777](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref51)-[84](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref51).
- [52] [Zaman M, Khodadi A, Mortazavi Y. Fischer-Tropsch](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref52) [synthesis over cobalt dispersed on carbon nanotubes-based](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref52) [supports and activated carbon. Fuel Process Technol](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref52) [2009;90:1214](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref52)-[9](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref52).
- [53] [Bao T, Zhao Z, Dai Y, Lin X, Jin R, Wang G, et al. Supported](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref53) $Co₃O₄$ -CeO₂ [catalysts on modified activated carbon for CO](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref53) preferential oxidation in H₂-rich gases. Appl Catal B Environ 2012:119-[120:62](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref53)-[73](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref53).
- [54] [Li Z, Wang Z, Bo J, Kawi S. Sintering resistant Ni](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref54) nanoparticles exclusively confined within $SiO₂$ [nanotubes for](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref54) $CH₄$ [dry reforming. Catal Sci Technol 2018;8:3363](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref54)-[71](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref54).
- [55] [Santos MDS, Neto RCR, Noronha FB, Bargiela P,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref55) [Rocha MDGCD, Resini C, et al. Perovskite as catalyst](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref55) [precursors in the partial oxidation of methane: the effect of](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref55) [cobalt, nickel and pretreatment. Catal Today](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref55) 2017:299:229-[41](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref55).
- [56] [Sun Y, Zhang G, Liu J, Zhao P, Peng H, Ying X, et al. Effect of](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref56) different activated carbon support on $CH₄-CO₂$ [reforming](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref56) [over Co-based catalysts. Int J Hydrogen Energy](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref56) [2018;43:1497](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref56)-[507](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref56).
- [57] [Bian Z, Das S, Wai MH, Hongmanorom P, Kawi S. A review on](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref57) bimetallic Ni-Based catalysts for $CO₂$ [reforming of methane.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref57) [ChemPhysChem 2017;18:3117](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref57)-[34](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref57).
- [58] [Foppa L, Silaghi MC, Larmier K, Comas-Vives A. Intrinsic](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58) [reactivity of Ni, Pd and Pt surfaces in dry reforming and](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58) [competitive reactions: insights from first principles](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58) [calculations and microkinetic modeling simulations. J Catal](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58) [2016;343:196](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58)-[207](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref58).
- [59] [Fouskas A, Kollia M, Kambolis A, Papadopoulou C,](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref59) Matralis H. Boron-modified $Ni/Al₂O₃$ [catalysts for reduced](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref59) [carbon deposition during dry reforming of methane. Appl](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref59) [Catal Gen 2014;474:125](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref59)-[34.](http://refhub.elsevier.com/S0360-3199(19)31735-5/sref59)